

Version: 1.0

Date: 4/16/2018

Classification: Public

Author(s): Andreas Dewald, Jonas Plum (Siemens CERT)

APFS INTERNALS FOR FORENSIC

ANALYSIS

ERNW WHITEPAPER 65

TABLE OF CONTENTS

1 INTRODUCTION .. 5

1.1 MOTIVATION .. 5

1.2 RELATED WORK .. 5

2 APFS DATA STRUCTURES ... 7

2.1 OBJECT... 7

2.2 CONTAINER SUPERBLOCK ... 8

2.3 ROOTNODE AND NODE ... 10

2.3.1 Entries ... 12

2.3.2 Entry Keys... 12

2.3.3 Pointer Value .. 12

2.3.4 omap Entry ... 12

2.3.5 Lookup Entry .. 13

2.3.6 Inode Entry ... 14

2.3.7 xattr Entry ... 15

2.3.8 Sibling Entry ... 15

2.3.9 Extent Status Entry ... 16

2.3.10 File extent Entry ... 16

2.3.11 Directory Record (dcrec) Entry .. 16

2.4 SPACE MANAGER .. 17

2.5 SPACE MANAGER INTERNAL POOL ... 17

2.5.1 Bitmap File ... 18

2.6 B-TREE .. 18

2.7 CHECKPOINT ... 18

2.8 VOLUME SUPERBLOCK .. 19

2.9 REAPER .. 20

3 APFS COMPOSITION .. 21

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 3

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

4 SUMMARY AND CONCLUSION .. 22

4.1 LIMITATIONS ... 22

4.2 OUTLOOK FUTURE WORK .. 22

4.3 CONCLUSION .. 22

5 LITERATURVERZEICHNIS ... 23

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 4

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

ABSTRACT

In forensic computing, especially in the field of post-mortem file system forensics, the reconstruction of lost or

deleted files plays a major role. The techniques that can be applied to this end strongly depend on the specifics

of the file system in question. Various file systems are already well-investigated, such as FAT16/32, NTFS for

Microsoft Windows systems and Ext2/3/4 as the most common Linux file system and HFS/HFS+ for macOS.

There also exist tools, such as the famous Sleuthkit by Brian Carrier that provide file recovery features for those

file systems by interpreting the file system’s internal data structures. APFS is the new file system for Apple

devices that is applied by default on all current iOS mobile devices, as well as macOS since High Sierra. For

APFS that is currently being rolled out on a large number of devices, no forensic file recovery methodologies

have been developed so far. To allow for manual analysis or development of forensic file recovery methods, a

deeper understanding of the internal structures of the file system is necessary. In this paper, we analyse APFS

and describe its internal structures to provide forensic/incident analysts with the necessary knowledge to this

end.

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 5

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

1 Introduction

Persistent storage devices are still one of the most important sources of digital evidence in digital investigations.

In particular, the forensically sound reconstruction of deleted files alongside with their metadata is an important

step in the forensic process. To this end, usually two distinct kinds of methods are applied: file carving or file

system parsing. File carving methods try to identify files content of different file formats by common patterns

(magic bytes). The advantage of those methods is that the underlying file system that was used to store the files

is not relevant and does not need to be understood. Therefore, carving still works for newly introduced and

unknown file systems. However, this comes with several disadvantages: First, only file types for which well-

known patterns exist can be reconstructed. Further, besides special approaches for specific file types, file

carving is mostly not able to handle file fragmentation. And last, but in the forensic context especially important,

file carving is not able to obtain metadata, such as timestamps or even file names and directory structures, as

this information is only held in the internal structures of the file system. On the other hand, parsing of file system

data provides all this information, although file recovery possibilities can be limited, depending on the particular

file system (Carrier, File system forensic analysis, 2005). The major problem of file system parsing, however, is

that for each upcoming file system, old tools do not provide any results at all, unless the internals of the new

file system are studied, specific methods for file recovery have been developed and implemented.

1.1 Motivation

There exist forensic approaches and tools, such as the famous Sleuthkit (Carrier, The sleuth kit (TSK), 2010),

for almost all common file systems, such as FAT 16/32, NTFS, Ext2/3/4, HFS, and HFS+. Apple recently

introduced their new file system APFS (Apple File System), which is rolled out on all current iOS and macOS

devices. So, there is a need for the analysis of APFS. Up to now, there already have been some publications on

APFS internals, which we revisit in Section 2. This previous work leaves some gaps that we try to close in this

paper.

1.2 Related Work

Apple (Apple Inc., Technical note tn1150: Hfs plus volume format, 2004) released documentation for HFS+,

where they describe the specifications of the file system. While APFS works quite different, some concepts,

such as the use of B-trees and records are used similar in APFS. Further, Apple (Apple Inc., Apple file system

guide, 2017) released information about some features of APFS. However, this information contains not much

information about internal structures of the file system. Some of the described features on a high level are

clones, snapshots, encryption, copy-on-write, and sparse files. Regarding internal structures, Apple states that

they use 64-bit file IDs, nanosecond timestamps, 263 allocation blocks and 263 bytes of maximum file size and

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 6

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

that file names are encoded in UTF-8. Potentially, there might be more official documentation in the future, as

Apple states ‘‘An open source implementation is not available at this time. Apple plans to document and publish

the APFS volume format specification’’ (Apple Inc., Technical note tn1150: Hfs plus volume format, 2004).

Hansen and Toolan (Hansen & Toolan, 2017) describe some artefacts and structures of APFS, of which we were

able to verify, update, or complete, as described in detail in Section 2, where we highlight the differences

between their work and ours explicitly.

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 7

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

2 APFS data structures

In their article, Hansen and Toolan [2017] have described many APFS structures. The following sections list

structures which are present in APFS including contributions by Hansen and Toolan [2017]. The reverse

engineering process of the file system was made independently from Hansen and Toolan [2017] and multiple

new findings have been added. The APFS version used for this publication is version 748.31.8, while Hansen and

Toolan [2017] use version 249.20.2 and 249.30.8. The names used in the following sections are taken from the

fsck_apfs command, which is included in macOS. All strings from this command were extracted to keep close

to the official Apple naming schema, while Hansen and Toolan [2017] create their own naming schema. In some

structures, all fields contain a prefix (e.g. o_oid, o_type in the object header). These prefixes are omitted.

Moreover, many additions and changes have been made in the structures.

APFS is structured in a single container that can contain multiple APFS volumes. A container needs to be >512

MB to contain more than one volume, >1024MB to contain more than two volumes and so on. Figure 1 shows an

overview of the APFS structure. The file system uses little-endian values for storing information. Strings are

stored in UTF-8 encoding and timestamps are 64bit nanoseconds starting from 1.1.1970 UTC (Unix epoch).

Standard block size is 4096 bytes per block. APFS is a copy-on-write file system so each block is copied before

changes are applied so a history of all files which were not overwritten and file system structures exists.

2.1 Object

Except for the Bitmap all file system data is stored as objects. All objects have a 32-byte header. Table 1 displays

the structure of this header.

pos size type id

0 8 u8le cksum

8 8 u8le oid

16 8 u8le xid

24 2 u2le type

26 2 u2le flags

28 2 u2le subtype

30 2 u2le padding

Table 1: Object Header Structure

The first eight bytes of the header are a variant of the Fletcher’s checksum (cksum) as described by Kodis (Kodis,

1992). The original algorithm was adapted to 64bit input. The checksum is calculated using the data of the block

of the object without the first 8 byte. The algorithm for calculating the checksum is shown in Listing 1.

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 8

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

func createChecksum(data []byte) uint64 {

 var sum1, sum2 uint64

 mod := uint64(2<<31 - 1)

 for i := 0; i < len(data)/4; i++ {

 chunk := data [i*4 : (i+1)*4]

 d := binary.LittleEndian.Uint32(chunk)
 sum1 = (sum1 + uint64(d)) % mod
 sum2 = (sum2 + sum1) % mod
 }

 check1 := mod - ((sum1 + sum2) % mod)

 check2 := mod - ((sum1 + check1) % mod)

 return (check2 << 32) | check1

}

Listing 1: Checksum calculation

The checksum is followed by the oid of the object which is used for referencing objects. The xid describes the

version of an object. It is incremented when the object is changed. The next two bytes describe the type of the

object. Currently nine object types are known:

o 0x1 Container Superblock

o 0x2 Rootnode

o 0x3 Node

o 0x5 Space Manager

o 0x7 Space M. Internal Pool

o 0xB B-Tree

o 0xC Checkpoint

o 0xD Volume Superblock

o 0x11 Reaper

The Bitmap object does not have an object type. The object type is followed by flags. The subtype is used to

further distinguish rootnodes and nodes. Six different subtypes are known:

o 0x0 No Subtype

o 0x9 History

o 0xB Location

o 0xE Files

o 0xF Extents

o 0x10 Unknown

The object header is closed by a two-byte padding.

2.2 Container Superblock

The container superblock is the entry point to the file system and is located in the first block of the file

system. This does not apply for improperly unmounted file systems, handling of these states it not in scope

of this paper. The fields of the container superblock are listed in Table 2. Every container superblock has a

unique uuid. Because of the

structure of containers and flexible volumes, allocation needs to be handled at a container level. The

container superblock contains information on the block_size and the number of blocks (block_count) for

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 9

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

this task. Feature compatibility of the file system is managed in the fields features,

read_only_compatible_features and incompatible_features. The next available oid and xid for the object

headers are saved in next_oid and next_xid.

The next ten fields are used to point to two different areas for checkpoints as displayed in 1. Checkpoints

are used to store the current and older states of the container. The first area for checkpoints is the

checkpoint descriptor area. This area stores the checkpoint object and more versions of the container

superblock. The checkpoint descriptor area has an allocated space of xp_desc_blocks. This allocated area

starts at the block at offset xp_desc_base and the xp_desc_len field contains the currently used blocks in

the area. The xp_desc_index field points to the currently used checkpoint descriptor, which starts with a

checkpoint object. This position is relative to the xp_desc_base offset. The xp_desc_index_len field contains

the object count of the current checkpoint descriptor.

The values for the second area, the checkpoint data area, are used equally. The current checkpoint data

starts with a Space Manager object and can contain (root-) node and reaper objects.

 Container Superblock

Checkpoint

 Descriptor Area

Checkpoint

Container Superblock

Checkpoint

Container Superblock

…

Checkpoint

Data Area

Space Manager

Rootnode

Rootnode

Reaper

Space Manager

Rootnode

Rootnode

Reaper

…

 Space Manager Internal

Pool

 …

Figure 1: Layout of the checkpoint structures

Following these checkpoint area fields references to multiple other objects are listed: spaceman_oid,

omap_oid and reaper_oid. Additionally, the block IDs of all volumes are stored in the superblock in fs_oid

with the count of this list stored in max_file_systems.

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 10

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

pos size type id

0 4 str magic ’NXSB’

4 4 u4le block_size

8 8 u8le block_count

16 8 u8le features

24 8 u8le read_only_compatible_features

32 8 u8le incompatible_features

40 16

uuid

56 8 u8le next_oid

64 8 u8le next_xid

72 4 u4le xp_desc_blocks

76 4 u4le xp_data_blocks

80 8 u4le xp_desc_base

88 8 u4le xp_data_base

96 4 u4le xp_desc_len

100 4 u4le xp_data_len

104 4 u4le xp_desc_index

108 4 u4le xp_desc_index_len

112 4 u4le xp_data_index

116 4 u4le xp_data_index_len

120 8 u8le spaceman_oid

128 8 u8le omap_oid

136 8 u8le reaper_oid

152 4 u4le max_file_systems

160 8 u8le fs_oid

Table 2: Container Superblock

2.3 Rootnode and Node

Nodes are flexible containers that are used for storing different kind of entries. They can be part of a B-tree

or exist on their own. A node starts with a node header as described in Table 3. The node header starts with

the node_type which defines some characteristics of the node. The level which describes the depth of the

node in the B-tree. The level is zero for leaf nodes and > 0 for index nodes. The following attributes define

the entry_count, the position of key section (keys_offset and keys_length) and data section data_offset. The

purpose of the meta_entry is currently unknown. This node header information is followed by a list of entry

headers that act as pointers to the entry keys and entry values. This way for each entry the node contains an

entry header at the beginning of the node, an entry key in the middle of the node and an entry value at the

end of the node as displayed in Figure 2.

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 11

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

Figure 2: Interal Structure of Nodes

pos size type id

0 2 u2le node_type

2 2 u2le level

4 4 u4le entry_count

10 2 u2le keys_offset

12 2 u2le keys_length

14 2 u2le data_offset

24 ... EntryHead entry_heads

... ... EntryKey entry_keys

... ... EntryValue entry_values

Table 3: Node Structure

Nodes contain different kinds of entries. The following entries have been observed in APFS images:

o 0x0 omap

o 0x2 lookup

o 0x3 inode

o 0x4 xattr

o 0x5 sibling

o 0x6 extent_status

o 0x8 extent

o 0x9 drec

o 0xc unknown

All entry types have the same entry header structure, but different key and value structure. Those structures

are described in the following sections. The structure with the type 0xc is currently unknown.

Object Header

Node Header

Entry Header 0

Entry Header 1

Entry Header 2

. . .

Entry Key 0

Entry Key 2

Entry Key 1

. . .

Entry Value 0

Entry Value 1

Entry Value 2

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 12

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

2.3.1 Entries

The entry header structure is the same for all node entries and is defined in Table 4. It consists of the position

for the entry key (key_offset and key_size) as well as the position of the related values (val_offset and

val_size). While the node header contains the offset to all keys the key_offset in this header is especially for

one key. The offset with regard to the object start is calculated with 32 (object header size) + 24 (node header

size) + keys_offset (from the node header) + key_offset (from the entry header).

pos size type id

0 2 s2le key_offset

2 2 u2le key_size

4 2 s2le val_offset

6 2 u2le val_size

Table 4: Entry Header Structure

2.3.2 Entry Keys

All entry keys start with a 8 byte field. The highest byte determines the kind as described in the list above,

while the remaining bytes contain the obj_id. The obj_id is the first part of the key and contains the id of the

referenced element. This can be a file_id or an objects oid. The obj_id can be followed by more fields

depending on the entry type. This content is described in the sections of the relating entry. The entries are

sorted in a node by their complete key which contains the key_value as well as the individual key content.

2.3.3 Pointer Value

Pointer values do have a special role. For every entry the value is a pointer value, if the node_type of the

node is 2. This is independent of the entry value_type in the key. Pointer values are used for the structure of

B-tree and direct to other nodes using the pointer attribute. Table 5 displays the structure of pointer values.

pos size type id

0 8 u8le pointer

Table 5: Pointer Value Structure

2.3.4 omap Entry

omap entries are used for mapping object oids to block offsets. The keys obj_id contains the oid and the key

content consists the xid as shown in Table 6. The omap entry value (Table 7) contains the position data for

the object (physikal address (paddr), size and obj_id).

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 13

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

pos size type id

0 8 u8le kind & obj_id

8 8 u8le xid

Table 6: omap Entry Key Structure

pos size type id

0 4 u4le paddr

4 4 u4le size

8 8 u8le obj_id

Table 7: omap Entry Value Structure

2.3.5 Lookup Entry

Lookup entries provide the possibility for a reverse lookup from blocks to file_ids. The keys (Table 8) contain

an objects (offset), while the value (Table 9) contains block_count and block_size which span the allocated

section of the file as well as the file_id to find the related entries.

pos size type id

0 8 u8le kind & obj_id

8 16 u8le offset

Table 8: Lookup entry key structure

pos size type id

0 4 u4le block_count

6 2 u2le block_size

8 8 u8le file_id

Table 9: Lookup Entry Value Structure

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 14

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

2.3.6 Inode Entry

The inode value contains metadata about files and folders. It does not have any extra key content besides

the kind and obj_id. The keys obj_id contains the file_id of the file for that the metadata is stored.

pos size type id

0 8 u8le parent_id

8 8 u8le file_id

16 8 u8le creation_timestamp

24 8 u8le modified_timestamp

32 8 u8le changed_timestamp

40 8 u8le accessed_timestamp

48 8 u8le flags

56 4 u4le nchildren_or_nlink

68 4 u4le bsd_flags

72 4 u4le owner_id

76 4 u4le group_id

80 2 u2le mode

92 2 u2le xf_num_ext

94 2 u2le xf_used_data

96 ... xf_header xf_header

... ... xf_field xfields

Table 10: Inode Entry Value Structure

pos size type id

0 2 u2le type

2 2 u2le length

Table 11: xfield header

The inode entry value (Table 10) starts with a reference parent_id to the parent folders file_id. The following

file_id might contain an id that is different from the normal file_id if the file was cloned. It is used for

matching inode entries with extent entries. The next four attributes are timestamps (creation_timestamp,

modified_timestamp, changed_timestamp and accessed_timestamp). The next eight bytes contain flags

that need further investigation. The nchildren_or_nlink field contains information on the number of

contained files for a folder or the number of links to the file. The fields bsdflags, owner_id, group_id and

mode contain access information. The xf_num_ext field contains the count of the following extended fields.

Extended fields contain additional information about files and folders, most importantly name and filesize

are stored here. xf_used_data is the number of bytes for all extended fields. xf_header is a list of type and

length values of the following extended fields, as shown in Table 11.

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 15

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

The extended fields contain information based in their type, as follows:

o Type 0x204 name (string)

o Type 0x2008 size (u8le)

Extended fields are aligned at multiples of 8 byte, so padding between extended fields might exist.

2.3.7 xattr Entry

The xattr entry has no additional key content. The keys obj_id contains the file_id of the file for that the

attribute is stored. The xattr entry value (Table 12) starts with the type of the attribute in the xattr_obj_id

field. Currently the type 0x2 for generic attributes and 0x6 for symlinks are known. The next two bytes

xdata_length define the size of the stored data. The dstream field varies by type and contain the attribute

information.

pos size type id

0 2 u2le xattr_obj_id

2 2 u2le xdata_len

4 ... dstream

Table 12: xattr Entry Value Structure

2.3.8 Sibling Entry

Sibling entries are used for hardlinks. The structure of sibling entries is displayed in Table 14, they contain

length and name fields. In addition, they contain a file_id reference to the file the hardlink links to. Their key

(Table 13) contains a second 8-byte object oid (id2) with unknown purpose.

pos size type id

0 8 u8le kind & obj_id

8 8 u8le object

Table 13: Sibling Entry Key Structure

pos Size type id

0 8 u8le file_id

8 2 u2le length

10 length str name

Table 14: Sibling Entry Value Structure

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 16

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

2.3.9 Extent Status Entry

The extent status entry precedes one or more extent entries and contains the number of extent values in

the 4-byte extent_count field as listed in Table 15.

pos size type id

0 4 u4le extent_count

Table 15: Extent Status Entry Value Structure

2.3.10 File extent Entry

File extent (fext) entries contain information about the position and size of file content. One file may have an

arbitrary number of extents. The key (Table 16) contains, besides the obj_id the 8-byte offset into the file

data, so that multiple extent values are sorted in order. The extent entry value (Table 17) first contains the

len of the extent. This is usually a multiple of the file systems block_size. The second field phys_block_num

contains the offset of the extent in blocks. The remaining bytes contain unknown flags.

pos size type id

0 8 u8le kind & obj_id

8 8 u8le offset

Table 16: Extent Entry Key Structure

pos size type id

0 8 u8le len

8 8 u8le phys_block_num

8 8 u8le flags

Table 17: Extent Entry Value Structure

2.3.11 Directory Record (dcrec) Entry

A dcrec entry contains the parents file_id as a obj_id preceded by a length and name in the drec entry key

(Table 18). The drec entry value (Table 19) contains the file_id, a creation timestamp as well as a type (file

or folder). It is used to provide fast directory listings.

pos size type id

0 8 u8le kind & obj_id

8 1 byte length

12 ... str name

Table 18: Directory Record Entry Key Structure

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 17

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

pos size type id

0 8 u8le file_id

8 8 u8le timestamp

16 2 u2le type

Table 19: Directory Record Entry Value Structure

2.4 Space Manager

The space manager (sometimes called spaceman) is used to manage allocated blocks in the APFS container.

Its structure is shown in Table 20. It contains numerous sizes for different elements of the file system:

block_size, blocks_per_chunk, chunks_per_cib, cibs_per_cab, block_count, chunk_count, cib_count and

cab_count. The number of free blocks is stored in free_count. Additionally, it contains references to the

space manager internal pool in list of spaceman_internal_pool_blocks with entry_count elements at

entries_offset. A reference to the previous pool is saved in the field prev_spaceman_internal_pool_block.

pos size type id

0 4 u4le block_size

4 4 u4le blocks_per_chunk

8 4 u4le chunks_per_cib

12 4 u4le cibs_per_cab

16 4 u4le block_count

20 4 u4le chunk_count

24 4 u4le cib_count

28 4 u4le cab_count

32 4 u4le entry_count

40 8 u8le free_count

48 4 u4le entries_offset

144 8 u8le prev_spaceman_internal_pool_block

... ... u8le spaceman_internal_pool_blocks

Table 20: Space Manager Structure

2.5 Space Manager Internal Pool

The space manager internal pool works as a missing header for the bitmap files. It contains a list of entries

as the structure in Table 21 shows. Those entries store the bitmap files bitmap_block_xid, total

bm_block_count, bitmap_free_blocks and the position (bitmap_block) as listed in Table 22.

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 18

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

pos size type id

4 4 u4le entry_count

8 ... SpacemanInternalPoolEntry entries

Table 21: Space manager Internal Pool structure

pos size type id

0 8 u8le bitmap_block_xid

16 4 u4le bm_block_count

20 4 u4le bitmap_free_blocks

24 8 u8le bitmap_block

Table 22: SpacemanInternalPoolEntry

2.5.1 Bitmap File

Bitmap files are used to state the allocation status of blocks. They do not have an object header and therefore

no type id.

2.6 B-Tree

B-trees manage multiple nodes. The structure of the B-tree is quite simple, as shown in Table 23. There are

currently two known btree_types: 0 for object map B-trees and 1 for file system B-trees, which are used to

resolve the fs_oids from the container superblock. Both types contain the offset of the root node.

pos size type id

0 8 u8le btree_type

16 8 u8le root

Table 23: B-Tree Structure

2.7 Checkpoint

A checkpoint contains a list of checkpoint entries (Table 24) which reference objects (type, flags, subtype,

size, oid, object) as listed in Table 25.

pos size type id

4 4 u4le entry_count

8 ... CheckpointEntry entries

Table 24: Checkpoint Structure

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 19

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

pos size type Id

0 2 u2le type

2 2 u2le flags

4 4 u4le subtype

8 4 u4le size

24 8 u8le oid

32 ... u8le object

Table 25: CheckpointEntry structure

2.8 Volume Superblock

A volume superblock exists for each volume in the file system. Its structure is displayed in Table 26.

pos size type id

0 4 str magic ’APSB’

4 4 u4le fs_index

24 4 u4le features

40 8 u4le fs_reserve_block_count

48 8 u4le fs_quota_block_count

56 8 u4le fs_alloc_count

96 8 u8le omap_oid

104 8 u8le root_tree_oid

112 8 u8le extentref_tree_oid

120 8 u8le snap_meta_tree_oid

144 8 u8le next_doc_id

152 8 u8le num_files

160 8 u8le num_directories

168 8 u8le num_symlinks

176 8 u8le num_other_fsobjects

184 8 u8le num_snapshots

208 16 vol_uuid

224 8 u8le last_mod_time

232 8 u8le formatted_by.last_xid

264 32 str formatted_by.id

272 8 u8le formatted_by.timestamp

280 8 u8le modified_by.last_xid

288 32 str modified_by.id

320 8 u8le modified_by.timestamp

672 ... str volname

Table 26: Volume Superblock Structure

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 20

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

The Volume Superblock starts with the magic bytes ’APSB’. The second file contains the fs_index of the

current volume. Feature compatibility of the volume is managed in the features field, similarly to the

container superblock.

While allocation management is done at container level, volume might contain quotas. Those are managed

with the fields fs_reserve_block_count, fs_quota_block_count and fs_alloc_count. References to the

omap_oid, the root_tree_oid, and the extentref_tree_oid and the snap_meta_tree_oid are the next fields.

Similarly, to the container superblock the omap_oid contains a pointer to a block map which maps block IDs

to block offsets. The number of elements currently stored in the volume is saved in the fields

num_files,num_directories,num_symlinks,num_other_fsobjects and num_snapshots. A uuid for every

volume is stored in vol_uuid. The time of the last update (last_mod_time) is stored with no further

information, while the formatted_by.timestamp is linked with an xid (formatted_by.last_xid) and a string

containing the volume creator (formatted_by.id, e.g. newfs_apfs (748.31.8)). A second similar entry with

modified_by.last_xid, modified_by.id and modified_by.timestamp exists referencing the apfs kernel

extension. The last information stored in the volume superblock is the volume name in volname.

2.9 Reaper

The reaper structure contains only very sparse information. Its purpose is yet unknown.

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 21

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

3 APFS composition

Figure 3 shows and illustrates the overall design of APFS and the interplay of the previously explained

structures. The first central structure in APFS when it comes to parsing the file system, is the Container

Superblock. Amongst other information (see details given before), it contains pointers to the Checkpoint

Descriptor and the Checkpoint Data. The Checkpoint Descriptor contains the Checkpoint itself and copies of

(older) Container Superblocks. Those Container Superblocks follow the Checkpoint blocks immediately. The

Checkpoint data contains the Spacemanager, History Blocks and Reaper that present a view on the entire

container at a given point in time. The Spacemanager points to the Spacemanager Internal Pool, which in

turn contains a pointer to the Bitmap.

Further, the first Container Superblock stores a reference to an Object Map (OMAP) B-tree that points to its

OMAP Root Node. This B-tree contains OMAP Entries which link object IDs to block offsets.

Most importantly, the Container Superblock stores pointers to the Volume Superblocks of all Volumes in the

file system (which are similar to old-fashioned partitions, but do not have hard boundaries and instead all

share the entire storage space).

Each Volume Superblock points to the Extentref Tree, its own OMAP, and a Root Directory Node for the

particular volume.

Figure 3: APFS composition

In the appendix of this whitepaper, we attach a reference sheet with the most important structures.

Another

Volume

Volume

Superblock

Spacemange

r

Internal

Pool
Bitmap

OMAP

Root Node

OMAP

Container

Superblock

Checkpoint
Space-

manager

History

History 2

Reaper

Container

Superblock

Extentref

Tree
OMAP

OMAP

Root Node

Root

Directory

Node

…

Checkpoint

Data

Checkpoint

Descriptor

Volume

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 22

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

4 Summary and Conclusion

In this paper, we summarized the current state of knowledge about the internals of the APFS file system

and try to close some of the prior existing gaps by providing additional insights from our analysis.

4.1 Limitations

While the listed structures in this paper are sufficient to parse generated disk images, assumptions about

the file systems where made. Firstly, other versions of APFS where not addressed in this paper and might

require adaption in the specification. Furthermore, there are various specific features of APFS, for which

further research has to be done and that have not been in the focus of this work:

o Encryption and compression

o Extra structures for Fusion Drives

o Snapshots

o Sparse files

o Hardlinks and softlinks

o APFS file systems that stem from conversion of HFS+

o Corrupted images (e.g. when not unmounted properly)

4.2 Outlook Future Work

The limitations listed in Section 4.1 need improvements. Especially encryption, which is enabled by default

on system partitions, should be analysed in depth. Further, we are currently developing a tool for forensic

file recovery, which we are going to publish soon.

4.3 Conclusion

In this work, we were able to close some of the gaps regarding the understanding of the internal structures

and workings of the APFS file system, and also updated existing information according to the most recent

version of APFS.

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 23

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

5 Literaturverzeichnis

Apple Inc. (2004). Technical note tn1150: Hfs plus volume format.

https://developer.apple.com/legacy/library/technotes/tn/tn1150.html (last visited: 2018-01-10).

Apple Inc. (2017). Apple file system guide.

https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/APFS_

Guide/Introduction/Introduction.html (last visited: 2018-01-10).

Apple Inc. (2017). Apple file system guide: Frequently asked questions.

https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/APFS_

Guide/FAQ/ FAQ.html (last visited: 2018-01-10).

Carrier, B. (2005). File system forensic analysis (3 ed.). Addison-Wesley Reading.

Carrier, B. (2010). The sleuth kit (TSK). Retrieved 10 14, 2017, from http://www.sleuthkit.org/sleuthkit/

Craiger, P. (2005). Advances in Digital Forensics - Recovering digital evidence from Linux systems.

Springer.

Hansen, K., & Toolan, F. (2017). Decoding the apfs file system. Digital Investigation 22, (pp. 107–132).

Kodis, J. (1992). Fletcher’s checksum. Dr. Dobb’s J. 17 (5), (pp. 32–38).

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 24

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

	1 Introduction
	1.1 Motivation
	1.2 Related Work

	2 APFS data structures
	2.1 Object
	2.2 Container Superblock
	2.3 Rootnode and Node
	2.3.1 Entries
	2.3.2 Entry Keys
	2.3.3 Pointer Value
	2.3.4 omap Entry
	2.3.5 Lookup Entry
	2.3.6 Inode Entry
	2.3.7 xattr Entry
	2.3.8 Sibling Entry
	2.3.9 Extent Status Entry
	2.3.10 File extent Entry
	2.3.11 Directory Record (dcrec) Entry

	2.4 Space Manager
	2.5 Space Manager Internal Pool
	2.5.1 Bitmap File

	2.6 B-Tree
	2.7 Checkpoint
	2.8 Volume Superblock
	2.9 Reaper

	3 APFS composition
	4 Summary and Conclusion
	4.1 Limitations
	4.2 Outlook Future Work
	4.3 Conclusion

	5 Literaturverzeichnis

		2018-04-16T16:44:07+0200
	Matthias Luft

