
Version: 1.0

Date: October 1, 2025

Classification: Public

ERNW WHITE PAPER 73
ANALYZING WINPMEM DRIVER
VULNERABILITIES

Table of Content

1 Handling 3

1.1 Document Status and Owner . 3

1.2 Document Version History . 3

2 Introduction 4

3 Memory Reminder 5

4 What Matters for Drivers? 8

5 Diving Into WinpMem Drivers 9

6 WinpMem Vulnerability I: TOCTOU 14

7 WinpMem Vulnerability II: write-zero-where 18

8 Exploitation of the WinpMem Vulnerability II 20

8.1 Historical Exploitation: gCiOptions . 20

8.2 Historical Exploitation: The Swan Song for DSE Tampering . 21

8.3 Historical Exploitation: Pimp My PID . 22

8.4 Historical Exploitation: Nullify the Security Descriptor . 22

8.5 New Exploitation: write-anything-where . 23

9 Conclusion 28

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 2

George-Boole-Weg 4 www.troopers.de

69124 Heidelberg www.insinuator.net

https://ernw.de
https://troopers.de
https://insinuator.net

1 Handling

The present document is classified as Public. Any distribution or disclosure of this document REQUIRES the permission

of the document owner as referred in Section Document Status and Owner.

1.1 Document Status and Owner

As the owner of this report, the document owner has exclusive authority to decide on the dissemination of this document

and responsibility for the distribution of the applicable version in each case to the places.

The possible entries for the status of the document are Initial Draft, Draft, Effective and Obsolete.

Report Information

Title: ERNW White Paper 73 - Analyzing WinpMem Driver Vulnerabilities

Document Owner: ERNW Enno Rey Netzwerke GmbH

Version: 1.0

Status: Effective

Classification: Public

Project Number: -

Author(s): Baptiste David, bdavid@ernw.de

Table 2: Document Status and Owner

1.2 Document Version History

Version Date Details

1.0 October 1, 2025 Initial version after quality assurance.

Table 3: Document Version History

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 3

George-Boole-Weg 4 www.troopers.de

69124 Heidelberg www.insinuator.net

https://ernw.de
https://troopers.de
https://insinuator.net

2 Introduction

In the landscape of digital forensics, where accuracy and reliability are critical, even well-intentioned tools can present

unexpected challenges. Recently, attention has been focused on WinpMem1, an open-source driver designed for foren-

sic memory analysis.

WinpMem is an open-source driver utilized to capture the completememory contents of a system. While its functionality

resembles that of a crash dump, themethodology differs significantly. Traditional crash dumps, such as those generated

byWindows, involve halting systemoperation (i.e. to a Blue Screen of Death) to write the entire RAM content to disk, after

which the system must be restarted. In contrast, WinpMem operates dynamically, capturing the full memory contents

in real time, enabling analysis tools to process the data without requiring a system reboot.

It can be used in conjunction with many other forensic tools (although WinpMem is totally independent of them), such

as Volatility or Velociraptor. In fact, the memory captured by WinpMem (in a raw format file, which is a bit old-fashioned

nowadays) can be directly analyzed off-line by tools that come and parse the memory. But there is more. WinpMem

proposes by design a “read device interface” to “run analysis on the live system (e.g., can be run directly on the device)”.

Said otherwise, it is possible to use the driver to get access to any portion of memory in the system.

WinpMem can be utilized alongside various other forensic tools (such as Volatility or Velociraptor) though it is developed

entirely independently of them. The memory acquired by WinpMem is typically stored in a raw format file (a somewhat

outdated approach today) called a dump file. This dump file can be analyzed offline using tools designed to parse and

interpret the memory written inside. However, its capabilities extend further. WinpMem is designed to expose a “read

device interface,” enabling live system analysis directly on the target machine. In other words, it provides access to any

portion of system memory in real time via the driver.

WinpMem is a forensic memory tool, developed by experts due to the complexity involved in creating a driver that inter-

acts with advanced kernel structures to manage memory. It is primarily used by computer security professionals, as

manipulatingmemory at this level is a highly specialized task. What could possibly go wrong? Quite a lot, as it turns out.

In this discussion, we highlight several critical issues within this driver, which we presented at Recon 2025 in Montreal.

Let’s spoil.

1https://github.com/Velocidex/WinPmem/blob/master/versioninfo.md

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 4

George-Boole-Weg 4 www.troopers.de

69124 Heidelberg www.insinuator.net

https://github.com/Velocidex/WinPmem/blob/master/versioninfo.md
https://ernw.de
https://troopers.de
https://insinuator.net

3 Memory Reminder

Before diving into the driver, itself, a short refresh about how the memory works on Windows. If you are already familiar

with this concept, please feel free to skip this section and directly read the next one. Considerations presented here are

valid since Windows 7 (and even before in some cases) and they may apply the same way for other operating system

compatible with Intel x86-x64 CPUs, despite few practical adjustments.

The memory in the machine is first divided in two entities. On the first side, the physical memory, sometime called

Random Access Memory (RAM), by an abuse of language. This is literally the memory plugged to the mother board of

the computer. It physically contains the memory of the system, and it has physicals limits for capacity (32 or 64 Gb,

depending on the content plugged in the machine). On the other hand, the virtual memory. As its name suggests it, it is

virtual, which means it is managed by the CPU and the operating system. This memory ultimately relies on the physical

memory, but it is an artifice used to extend the total memory capacity and managing the parameters associated to that

memory (read, write, or executable, among other things).

When a process uses memory to store or read information to/from it, this one access virtual memory, not directly the

physical one. This is the responsibility of the CPU (managed by the operating system) to make the translation between

the virtual address accessed in a process and the physical memory, where the real content is supposed to be accessed.

This system is usually called Memory Management Unit (MMU) in computer science. What are the consequences of

such a system?

Firstly, it allows every process to use its own set of memory called the virtual address space of a process2 (abbreviated

address space, for the sake of conciseness). In practice, the virtual address space for each process is private and cannot

be accessed by other processes unless it is shared. More directly, it means that if process A stored at the address

0x401000 the 0x53 value, the process B (which is different from A) will not (or with a deep low probability due to hazard)

get at the address 0x401000 the 0x53 value (but another value). This explains why different processes can see the

same address of memory but not the same content at the same address. The reason is that they have the same virtual

address, which is referenced, behind the stage, by the CPU/OS with different locations in physical memory. As a side

note, the shared memory is nothing but two different (and sometimes the same) virtual addresses from two different

processes but pointing to the same physical address in memory.

In practice, the memory is not managed byte per byte, but memory page of bytes per memory page of bytes. A page of

memory3 is usually composed of 4096 bytes, i.e. 4Kb. This value is defined by Intel, meaning that all operating system

interfacing with such a CPU (but also with AMD) needs to manage memory per pages of that size.

2https:// learn.microsoft.com/en-us/windows/win32/memory/virtual-address-space
3https:// learn.microsoft.com/en-us/windows/win32/memory/virtual-address-space-and-physical-storage

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 5

George-Boole-Weg 4 www.troopers.de

69124 Heidelberg www.insinuator.net

https://learn.microsoft.com/en-us/windows/win32/memory/virtual-address-space
https://learn.microsoft.com/en-us/windows/win32/memory/virtual-address-space-and-physical-storage
https://ernw.de
https://troopers.de
https://insinuator.net

This translation from virtual to physical memory is performed with a specific structure defined by Intel and managed by

the kernel of the operating system, the memory Page Table Entry (PTE). This mechanism is not so complex to describe,

but it would make that post longer that it is already. For short, each process has its own set of pages tables, used

to perform the translation from virtual memory to physical ones (among other things, since this is also that structure

which is used to define read/write/execute rights in the memory). In a way, the PTE mechanism allows making the

conversion from virtual address to physical address. Internally, there is a special kernel mode register in the CPU called

CR3 which is used to manage the PTEs of each process. This design has two consequences: at first, it means that

changing the CR4 value in the CPU is sufficient (of course, more operations are involved to do it correctly, but for the

today’s post, this is sufficient) to switch from one virtual address space of a process to another one. Then, it means that

only the kernel of the operating system (running in ring 0) is allowed to switch process virtual memory space context,

since reading and writing to CR3 register is a privileged ring-0 instruction for the CPU.

Figure 1: Illustration from Intel Documentation relative to the Page Table model used to translate virtual address to physical
address.

From a conceptual point of view, this is enough. Of course, the interested reader can go deeper with the concept of

working set4 which represents the virtual memory which is present in physical memory, introducing the notion of page

fault and paged memory. For short, virtual memory can belong to the disk instead of physical memory for the sake of

performances. This one will be loaded once accessed first in memory, via a mechanism of page fault. This is a relevant

topic for the present discussion, especially talking about the design of WinPmem.

4https:// learn.microsoft.com/en-us/windows/win32/memory/working-set

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 6

George-Boole-Weg 4 www.troopers.de

69124 Heidelberg www.insinuator.net

https://learn.microsoft.com/en-us/windows/win32/memory/working-set
https://ernw.de
https://troopers.de
https://insinuator.net

Finally, we need to introduce the notion of kernel- and user-mode memory space. On the first hand, the kernel mem-

ory is shared for the whole system, in a pool of memory. It means that every code running in kernel-mode shares

the same memory space with all other codes running in kernel-mode. Of course, this memory is virtual memory and

there is a centralized memory manager used to allocate and manage the kernel memory. On the other hand, and due

to the design of the virtual memory, the virtual memory is specific to a process. This user-mode memory is split be-

tween different subtype of memories (stack, heap, …) and the address space is always bellowing a limit (defined by

the MmHighestUserAddress value in the kernel of Windows). In practice, the user-mode addresses are accessible to

the process running in user-mode but also to kernel-mode code, if there is no Supervisor Mode Access Prevention

(SMAP).

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 7

George-Boole-Weg 4 www.troopers.de

69124 Heidelberg www.insinuator.net

https://ernw.de
https://troopers.de
https://insinuator.net

4 What Matters for Drivers?

Writing a driver is writing a program like any other, but it’s not the same as writing a user-mode program. Not only does

the API change, but there are other specificities. IRQL management, paged rather than paged memory, the slightest

buffer overflow resulting in a BSOD… But a profound change in all aspects of security. It’s important to understand

that in the core, the notion of classic security is no longer relative. In a way, everything is allowed, the forbidden is the

exception. And therein lies the difficulty.

What can we look for in a vulnerable driver? Mainly: read/write/execute-what-where. Behind this neologism, it is

important to see the concept. What’s interesting for an attacker is to gain access to the kernel’s very special privileges:

◦ The ability to read any part of the memory without restriction is a major advantage, to bypass certain security

features such as ASLR or credential/encryption key recovery.

◦ The ability to write any part of the memory allows unlimited modification of system, in particular regarding the

security or kernel-mode code execution.

◦ The ability to execute any section of the memory allows a full control of the system.

With WinpMem, read access is immediate and direct by design. Indeed, the diver is designed to give unlimited access

to all the memory present on the machine. This is typical of this kind of “security driver”, whose purpose is for various

reasons to give access to information, breaks the security of the system. There’s no claim to make a read-what-where

here, since this is a feature of the driver – even if the security issue is no less important.

However, there is an ambiguous limitation here. As explaining previously, the memory of a process is independent of

another and, in practice, it directly depends on the CR3 register. By design, WinpMem captures the whole memory

based on physical address, or on virtual address in the context of the calling process. There is no direct mechanism to

switch from a process to another, allowing to capture the specific memory of each process. It means that even if it is

possible to proceed with physical memory and the page file, the main purpose of a tool like WinpMem is to capture the

memory of the kernel and optionally the memory of a process.

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 8

George-Boole-Weg 4 www.troopers.de

69124 Heidelberg www.insinuator.net

https://ernw.de
https://troopers.de
https://insinuator.net

5 Diving Into WinpMem Drivers

Since WinpMem is open source, we propose to base our analysis on its source code directly.

The architecture of drivers is driven by the choice of one of the main technologies used to write a driver. From the

good-old WDM to the WDF drivers, there are several possibilities. WinpMem is a WDM driver, meaning it uses relative

classic and simple mechanisms to interface with the system.

Figure 2: Entry point function for the WinpMem driver.

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 9

George-Boole-Weg 4 www.troopers.de

69124 Heidelberg www.insinuator.net

https://ernw.de
https://troopers.de
https://insinuator.net

As any driver, this has an entry point called DriverEntry5. Once the local variables have been initialized, there is a

call to the IoCreateDeviceSecure6 function to create a named device object used as a communication interface. This

object enables subsequently a user-mode application to communicate with the driver. Interestingly, this communica-

tion interface is setup with the DefaultSDDLString parameter set to SDDL_DEVOBJ_SYS_ALL_ADM_ALL7, meaning the

access to the driver’s communication interface is only restricted to administrators or system users. That way, the driver

is not vulnerable, since the attacker must be running with administrator rights to get access to it. As Raymond Chen

would say, it rather involved being on the other side of this airtight hatchway8. That being said, WinpMem is not an

ordinary driver. This is often used in forensics or incident response contexts. Which means the machine may already

have been compromised, for instance by malware. The malware may be already executed as an administrator (which

remains a strong assumption) or have used a UAC-bypass9 to do so. This particular context does not make the attack

a sure thing, but it at least makes it plausible.

Then comes the initialization of the I/O manager10 for the driver. The communication between an application and the

driver is performed through the use of I/O request packets (IRPs) defined by IRP structures11. To handle IRPs12 (we also

say “completing IRPs”13), the driver registers some IRP handlers, also called dispatch routines14,15. The purpose (and

thus the definition) of a dispatch routine depends on the I/O function code it handles. The I/O function code (IOCTLs) is

also defined as the IRP Major Function code16. These are predefined by Microsoft (usually starting with IRP_MJ prefix)

but they can be driver defined17. In the case of WinpMem, one can see that the dispatch routines for IRP_MJ_CREATE18,

IRP_MJ_CLOSE19, IRP_MJ_READ20, and IRP_MJ_DEVICE_CONTROL21 codes are provided.

5https:// learn.microsoft.com/en-us/windows-hardware/drivers/kernel/writing-a-driverentry-routine
6https:// learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdmsec/nf-wdmsec-wdmlibiocreatedevicesecur
e

7https:// learn.microsoft.com/en-us/windows-hardware/drivers/kernel/sddl-for-device-objects
8https://devblogs.microsoft.com/oldnewthing/20150923-00/?p=91531
9According to the announcement made by Microsoft regarding the new Administrator Protection (see: https:// techcomm
unity.microsoft.com/blog/microsoft-security-blog/evolving-the-windows-user-model-%E2%80%93-introducing-adm
inistrator-protection/4370453) feature, Microsoft claimed to have mitigated many UAC bypass techniques, except for the
issue related to token manipulation attacks

10https:// learn.microsoft.com/en-us/windows-hardware/drivers/kernel/windows-kernel-mode-i-o-manager
11https:// learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_irp
12https:// learn.microsoft.com/en-us/windows-hardware/drivers/kernel/different-ways-of-handling-irps-cheat-sheet
13https:// learn.microsoft.com/en-us/windows-hardware/drivers/kernel/completing-irps
14https:// learn.microsoft.com/en-us/windows-hardware/drivers/kernel/dispatch-routine-functionality
15As a side note, the driver purists talk about routine in kernel-mode and “function” in user-mode. This is a convenient way
to make the distinction between the application field of a given code. Both terms are similar since they designate a function
written in the end in a program.

16https:// learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-major-function-codes
17https:// learn.microsoft.com/en-us/windows-hardware/drivers/kernel/defining-i-o-control-codes
18https:// learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-create
19https:// learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-close
20https:// learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-read
21https:// learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-device-control

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 10

George-Boole-Weg 4 www.troopers.de

69124 Heidelberg www.insinuator.net

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/writing-a-driverentry-routine
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdmsec/nf-wdmsec-wdmlibiocreatedevicesecure
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdmsec/nf-wdmsec-wdmlibiocreatedevicesecure
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/sddl-for-device-objects
https://devblogs.microsoft.com/oldnewthing/20150923-00/?p=91531
https://techcommunity.microsoft.com/blog/microsoft-security-blog/evolving-the-windows-user-model-%E2%80%93-introducing-administrator-protection/4370453
https://techcommunity.microsoft.com/blog/microsoft-security-blog/evolving-the-windows-user-model-%E2%80%93-introducing-administrator-protection/4370453
https://techcommunity.microsoft.com/blog/microsoft-security-blog/evolving-the-windows-user-model-%E2%80%93-introducing-administrator-protection/4370453
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/windows-kernel-mode-i-o-manager
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_irp
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/different-ways-of-handling-irps-cheat-sheet
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/completing-irps
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/dispatch-routine-functionality
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-major-function-codes
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/defining-i-o-control-codes
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-create
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-close
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-read
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-device-control
https://ernw.de
https://troopers.de
https://insinuator.net

The case of the IRP_MJ_CREATE22 and IRP_MJ_CLOSE23 codes are both handled by the same dispatch routine called

wddCreateClose. This one is just a simple pass-through IRP24 handler, whose lone purpose is to do the minimal

actions to do nothing in particular. The IRP_MJ_READ25 operation is the one which is supposed to provide the read-

what-where capability to the calling application. The use case is simple. The calling application uses the ReadFile26

function to provide to the driver an input buffer with the address to read (either in user-mode or kernel-mode), the size

to be read, and an output buffer, allocated in user-mode, to retrieve the memory copied from the driver. More could be

said about the way the memory is read, may be in another blog post if there is an interest about.

The most important I/O code when analyzing a driver is usually the IRP_MJ_DEVICE_CONTROL27. This handles the

driver’s defined actions implemented by the driver. Said otherwise, the driver can define its own I/O codes to ex-

ecute driver’s specific operations. Usually, for a user-mode application, the communication is performed via the

DeviceIoControl28 function, where it is possible to provide the I/O code, an input buffer, and an output buffer. For

WinpMem, the dispatcher routine for the IRP_MJ_DEVICE_CONTROL29 code is the wddDispatchDeviceControl func-

tion.

The beginning of the wddDispatchDeviceControl aims to retrieve the buffer provided by the DeviceIoControl30

function call. This part is particularly tricky for driver developers. Why? Because the calling application, running in

user-mode, provides its own buffers to the driver. It means the provided buffers are in user-mode (in the memory

space of the calling application) but also under the total control of the application. That way, the application could

provide invalid buffer, associated with invalid size, and so on. It is the driver’s responsibility to take care of the provided

buffer, with the appropriate safety procedures. The way to do it depends on the communication method used by the

driver.

22https:// learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-create
23https:// learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-close
24https:// learn.microsoft.com/en-us/windows-hardware/drivers/kernel/how-to-complete-an-irp-in-a-dispatch-routi
ne

25https:// learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-read
26https:// learn.microsoft.com/en-us/windows/win32/api/ fileapi/nf-fileapi-readfile
27https:// learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-device-control
28https:// learn.microsoft.com/en-us/windows/win32/api/ ioapiset/nf-ioapiset-deviceiocontrol
29https:// learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-device-control
30https:// learn.microsoft.com/en-us/windows/win32/api/ ioapiset/nf-ioapiset-deviceiocontrol

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 11

George-Boole-Weg 4 www.troopers.de

69124 Heidelberg www.insinuator.net

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-create
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-close
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/how-to-complete-an-irp-in-a-dispatch-routine
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/how-to-complete-an-irp-in-a-dispatch-routine
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-read
https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-readfile
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-device-control
https://learn.microsoft.com/en-us/windows/win32/api/ioapiset/nf-ioapiset-deviceiocontrol
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-device-control
https://learn.microsoft.com/en-us/windows/win32/api/ioapiset/nf-ioapiset-deviceiocontrol
https://ernw.de
https://troopers.de
https://insinuator.net

Figure 3: Beginning of the IOCTL dispatcher function from WinpMem driver.

Indeed, for WDM drivers, there are three communication methods31 to exchange IRP buffers. For short:

◦ The METHOD_BUFFERED: the kernel is responsible to make the transition from the user-mode buffer to a kernel-

mode buffer specifically allocated for that purpose. That way, a part of the security is handled by Windows which

handles a large part of the buffer’s security.

◦ The METHOD_IN_DIRECT or METHOD_OUT_DIRECT: either for input buffer or output buffer, access to the buffer’s

content is ensured byMemory Descriptor List (MDL)32. This structure is originally used to describe the physical page

layout for a virtual memory buffer, especially in the case where contiguous virtual memory pages can be spread

over several discontinuous physical pages. In practice, to access the pages safely regardless of process context,

31https:// learn.microsoft.com/en-us/windows-hardware/drivers/kernel/buffer-descriptions-for-i-o-control-codes
32https:// learn.microsoft.com/en-us/windows-hardware/drivers/kernel/using-mdls

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 12

George-Boole-Weg 4 www.troopers.de

69124 Heidelberg www.insinuator.net

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/buffer-descriptions-for-i-o-control-codes
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/using-mdls
https://ernw.de
https://troopers.de
https://insinuator.net

drivers call calling the MmProbeAndLockPages33 function and the MmGetSystemAddressForMdlSafe34 macro to

map an MDL safely. That way, the MDL mechanism ensures safe access to the buffer.

◦ The METHOD_NEITHER method: the user-mode buffers provided for input and output are directly accessible. More

directly, the kernel does not provide any support to validate or map them the user-mode virtual addresses in the

IRP. It is up to the driver to take care of the whole security. The name comes from the fact this method does neither

use intermediate buffers nor MDL to handle the communication.

Managing the buffers securely with can be challenging, even following Microsoft’s documentation35. But the most chal-

lenging is by far the METHOD_NEITHER. As a general rule, this method should be avoided except in the very few cases

where it could be relevant (considering it could have relevant cases, which is far to be obvious). The specific manage-

ment of the neithermethod, as described byMicrosoft36, is not rocket science, but it requires being particularly rigorous

on every buffer’s access. For the sake of simplicity (and avoiding edge-cases that need to be considered anyway), the

user-mode buffers must be evaluated within driver-supplied exception handler (i.e. __try/__except blocs), evaluated

with the ProbeForRead37 (for input buffer) and ProbeForWrite38 (for the output buffer) support routines. Ideally and

as recommended by Microsoft, buffers should be copied into kernel-mode buffer specifically allocated for this purpose.

Said otherwise, the best solution is tomimic the bufferedmethod (hence the reason why preferring the bufferedmethod

to the neither method).

Because neither method should be avoided (irony), WinpMem decided to use the METHOD_NEITHER. I personally cannot

explain why the METHOD_NEITHER has been somuch used in the field of driver development, but I can guess the apparent

simplicity (which is in practice the total opposite) of the method and the magic-power of copy and past from legacy

source-code could be a good start. In most of the cases, observing the METHOD_NEITHER in a driver is a surefire mark

of vulnerability.

33https:// learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-mmprobeandlockpages
34https:// learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-mmgetsystemaddressformdlsafe
35https:// learn.microsoft.com/en-us/windows-hardware/drivers/kernel/security-issues-for-i-o-control-codes
36https:// learn.microsoft.com/en-us/windows-hardware/drivers/kernel/using-neither-buffered-nor-direct-i-o
37https:// learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-probeforread
38https:// learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-probeforwrite

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 13

George-Boole-Weg 4 www.troopers.de

69124 Heidelberg www.insinuator.net

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-mmprobeandlockpages
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-mmgetsystemaddressformdlsafe
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/security-issues-for-i-o-control-codes
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/using-neither-buffered-nor-direct-i-o
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-probeforread
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-probeforwrite
https://ernw.de
https://troopers.de
https://insinuator.net

6 WinpMem Vulnerability I: TOCTOU

Following the code given in Figure 4 shows the way the WinpMem driver shares memory layout content with the calling

application. The way the memory layout and other information shared is not what matters here, even if we could dis-

cuss the quality of a method using the undocumented MmGetPhysicalMemoryRanges routine. For the sake of reading,

we propose to split the code in Figure 4 in two parts. On the one hand, in the blue box, there is the buffer’s verifi-

cation procedure, which follows the mainlines of the Microsoft documentation39 regarding the buffer management in

the METHOD_NEITHER context. The verification on the buffers is correctly performed with the ProbeForRead40 and the

ProbeForWrite41 routines in __try/__except blocks. On the other hand, in the red box, the output buffer is casted

into a WINPMEM_MEMORY_INFO structure, defined for WinpMem. This structure is first initialized to zero (with the help

of the RltZeroMemory42 macro) before being filed as expected in the AddMemoryRange routine.

The problem of this code is its two-step approach. Doing the verification first and subsequently using the buffer outside

the safe-verification environment exposes the code to a time-to-check to time-to-use attack (TOCTOU43 attack).

Please remember, with the METHOD_NEITHER, the output buffer is under the exclusive control of the user-mode appli-

cation interfacing with the driver. This buffer is verified once but no more thereafter. The idea of the attack is to let

the verification happens as expected and then update the buffer once the verification has been performed, during the

initialization of the buffer, where the buffer is vulnerable.

39https:// learn.microsoft.com/en-us/windows-hardware/drivers/kernel/using-neither-buffered-nor-direct-i-o
40https:// learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-probeforread
41https:// learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-probeforwrite
42https:// learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-rtlzeromemory
43https:// en.wikipedia.org/wiki/Time-of-check_to_time-of-use

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 14

George-Boole-Weg 4 www.troopers.de

69124 Heidelberg www.insinuator.net

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/using-neither-buffered-nor-direct-i-o
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-probeforread
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-probeforwrite
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-rtlzeromemory
https://en.wikipedia.org/wiki/Time-of-check_to_time-of-use
https://ernw.de
https://troopers.de
https://insinuator.net

Figure 4: Incorrect management of the output buffer in the context of the IOCTL_GET_INFO code.

How is it possible? The simple way is to change user-mode buffer rights on the flight. With the help of the

VirtualProtect44 function, it is possible to change memory’s rights. For instance, from read/write to read-only. That

way, any further write access to the user-mode buffer would result in an exception. And such an exception in kernel-

mode inevitably results in a Blue Screen Of Death45,46. Note other strategies are possible, like releasingmemory during

use, and so on…

44https:// learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect
45https://devblogs.microsoft.com/oldnewthing/20240730-00/?p=110062
46https://www.crowdstrike.com/en-us/blog/falcon-content-update-preliminary-post-incident-report/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 15

George-Boole-Weg 4 www.troopers.de

69124 Heidelberg www.insinuator.net

https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect
https://devblogs.microsoft.com/oldnewthing/20240730-00/?p=110062
https://www.crowdstrike.com/en-us/blog/falcon-content-update-preliminary-post-incident-report/
https://ernw.de
https://troopers.de
https://insinuator.net

To be able to proceed, the user-mode application creates two threads47. One to send the I/O code IOCTL_GET_INFO

with the DeviceIoControl48 function to the driver and another one to repeatedly change the memory rights of the

user-mode buffer. The operation performed by the DeviceIoControl49 function is indefinitely looped.

Figure 5: Illustration of the buffer’s right change exploitation.

The goal is to perform the operation many times, so that the verification has a chance to be validated, but the following

access to the buffer will trigger an unhandled exception. In that case, it means VirtualProtect50 function call should

let the user-mode buffer to be writable in the blue box of the Figure YY and to be read-only in at least one of the routines

called in the red box.

47https:// learn.microsoft.com/en-us/windows/win32/procthread/creating-threads
48https:// learn.microsoft.com/en-us/windows/win32/api/ ioapiset/nf-ioapiset-deviceiocontrol
49https:// learn.microsoft.com/en-us/windows/win32/api/ ioapiset/nf-ioapiset-deviceiocontrol
50https:// learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 16

George-Boole-Weg 4 www.troopers.de

69124 Heidelberg www.insinuator.net

https://learn.microsoft.com/en-us/windows/win32/procthread/creating-threads
https://learn.microsoft.com/en-us/windows/win32/api/ioapiset/nf-ioapiset-deviceiocontrol
https://learn.microsoft.com/en-us/windows/win32/api/ioapiset/nf-ioapiset-deviceiocontrol
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect
https://ernw.de
https://troopers.de
https://insinuator.net

Figure 6: Illustration of the method to exploit the time-to-check-time-to-use vulnerability.

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 17

George-Boole-Weg 4 www.troopers.de

69124 Heidelberg www.insinuator.net

https://ernw.de
https://troopers.de
https://insinuator.net

7 WinpMem Vulnerability II: write-zero-where

To be exploited, this requires a redacted version of the driver, since the issue is on an old version, but this one is not directly

exploitable due to other limitations of the old version of the driver. It is provided to show different exploitation techniques.

A second issue involves another IOCTL provided by WinpMem: IOCTL_REVERSE_SEARCH_QUERY. This IOCTL converts a

virtual address (valid only within a specific process) into a physical address (referring to actual hardware memory). As

with IOCTL_GET_INFO, the virtual address is passed via a buffer fully controlled by the calling application. However, in

this case, the buffer is properly handled: it is probed and copied into a local variable within a __try/__except block,

and the original buffer is not accessed thereafter. The same applies to the output buffer that stores the physical address,

ensuring no TOCTOU vulnerability is present.

Figure 7: Part of the code which correctly handles the input and the output buffers in a search query operation. Older version
did not implement such operation.

Internally, the resolution of the physical address is handled by the virt_find_pte function, which uses

MmGetVirtualForPhysical51 to obtain the PTE associated with the given virtual address. Upon completion, three

outcomes are possible:

1. the function fails (i.e., the return value is not PTE_SUCCESS), in which case the local variable Out_PhysAddr is set

to zero by default;

2. the function succeeds, but the virtual address does not map to a resident memory page, so no physical address

exists and Out_PhysAddr is also set to zero;

3. the PTE is valid, and Out_PhysAddr holds the corresponding physical address.

In all cases, the value of Out_PhysAddr is copied into the output buffer following a successful probing operation. But

since the METHOD_NEITHER is used, the address supplied by the user-mode application is passed directly to the driver.

This means it can reference either user-mode or kernel-mode address for memory buffer. As the driver accesses the

buffer directly, there is no built-in restriction preventing writes to a kernel-mode address.

51https:// learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-mmgetphysicaladdress

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 18

George-Boole-Weg 4 www.troopers.de

69124 Heidelberg www.insinuator.net

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-mmgetphysicaladdress
https://ernw.de
https://troopers.de
https://insinuator.net

With the event of the lack of proper validation, by supplying an invalid address (for instance, a user-mode address

referencing unallocated memory) to the IOCTL_REVERSE_SEARCH_QUERY request, it is possible to write a zero value

(i.e., the default content of the output buffer) to an arbitrary location in memory if the virt_find_pte function fails.

This is a classic vulnerability in driver development, resulting from improper handling of user-supplied buffers. It is

worth noting that, if the virt_find_pte function succeeds, the physical address is written directly to the output buffer

address provided by user mode.

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 19

George-Boole-Weg 4 www.troopers.de

69124 Heidelberg www.insinuator.net

https://ernw.de
https://troopers.de
https://insinuator.net

8 Exploitation of the WinpMem Vulnerability II

When exploiting a vulnerable driver, the primary objective is often to achieve both read-what-where andwrite-what-where

capabilities. This is because arbitrary read access allows an attacker to extract sensitive information from kernel mem-

ory, effectively bypassing protections such as Address Space Layout Randomization (ASLR). For example, an attacker

could retrieve BitLocker-related components (including encryption keys), access tokens of critical processes, or the

addresses of sensitive kernel structures. With this knowledge, arbitrary write access can then be used to modify these

structures. For instance, it becomes possible of altering security callbacks to disable integrity checks or modifying pro-

cess tokens to escalate privileges. Ultimately, unrestricted read and write capabilities in kernelmode grant the attacker

control equivalent to the highest privilege level within the operating system.

The concept of read-what-where refers to the ability to read arbitrary locations in physical or kernel memory. With a

driver like WinpMem, this capability is trivial to achieve, as it is inherently supported by the driver's design.

The term write-what-where refers to the ability to write arbitrary data to any location in memory, particularly within

kernel memory. In our case, however, the capability is more accurately described as write-zero-where, since it is limited

to writing zero values at arbitrary addresses rather than arbitrary data. Although subtle, this distinction significantly

impacts the potential for exploitation.

8.1 Historical Exploitation: gCiOptions

A traditional method of exploiting a write-zero-where vulnerability involves modifying the gCiOptions global variable in

kernel memory. This variable controls the enforcement of Driver Signature Enforcement (DSE)52. On 64-bit versions of

Windows53, drivers must be digitally signed. The signature verification is performed in kernel mode, specifically by the

Code Integrity54 module (CI.dll).

To enforce the DSE policy, CI.dll first checks the value of the gCiOptions55 variable. If this value is set to anything

other than 0x00 (disabled56) or 0x08 (test mode57), driver signature enforcement is active. By leveraging a write-zero-

where vulnerability, an attacker can set gCiOptions to zero, effectively disabling58 the signature check. This allows the

loading of unsigned drivers using only standard administrator privileges.

52https:// learn.microsoft.com/en-us/windows-hardware/drivers/ install/ driver-signing
53Starting from Windows XP 64-bit and in all subsequent versions.
54Code Integrity also takes care of other security checks, such as WDAC (see: <https://learn.microsoft.com/en-
us/hololens/windows-defender-application-control-wdac) or Smart App Control, among others.

55Prior to Windows 8, it was the Boolean g_CiEnabled value, stored in ntoskrnl, that was checked.
56https:// v1k1ngfr.github.io/loading-windows-unsigned-driver/
57https:// learn.microsoft.com/en-us/windows-hardware/drivers/ install/ the-testsigning-boot-configuration-option
58https:// v1k1ngfr.github.io/loading-windows-unsigned-driver/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 20

George-Boole-Weg 4 www.troopers.de

69124 Heidelberg www.insinuator.net

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/driver-signing
https://www.bsi.bund.de/DE/Service-Navi/Publikationen/Studien/SmartApp_Control/Smart_App_Control.html%3E
https://v1k1ngfr.github.io/loading-windows-unsigned-driver/
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/the-testsigning-boot-configuration-option
https://v1k1ngfr.github.io/loading-windows-unsigned-driver/
https://ernw.de
https://troopers.de
https://insinuator.net

Beginning with Windows 8.1, Microsoft introduced a mitigation known as Kernel Patch Protection59 (KPP), also re-

ferred to as PatchGuard, which periodically verifies the integrity of critical kernel variables. The gCiOptions variable

is among those monitored to prevent unauthorized modifications. However, the response time of this mechanism is

non-deterministic, creating a period (for a few seconds) during which an attacker could modify gCiOptions and load an

unsigned driver before detection occurs. To address this limitation, Windows 10 introduced Hypervisor-Protected Code

Integrity (HVCI)60, also known as HyperGuard. Built on Hyper-V61 and part of the Virtualization-Based Security (VBS)

framework62, HVCI leverages the hypervisor to enforce access control over memory pages marked as highly sensitive,

including the one containing gCiOptions. Unlike PatchGuard, this approach provides immediate protection, eliminating

any exploitable period and ensuring robust enforcement of code integrity.

8.2 Historical Exploitation: The Swan Song for DSE Tampering

If HVCI can check for read-only values, it cannot ensure the protection of dynamic structures, which are evolving over

time. In particular, in the context of DSE, the iValidateImageHeader function63 is called part of CI.dll. This routine is

set up, in the SeCiCallbacks structure (in ntoskrnel) at the end of the SepInitializeCodeIntegrity routine. The

idea of the attack is to replace the CiValidateImageHeader routine by another routine in the kernel returning always

STATUS_SUCCES (0x00).

While HVCI effectively protects read-only values, it cannot guarantee the integrity of dynamic structures that change

over time. In the context of DSE, the CiValidateImageHeader function64 (which belongs in CI.dll) is responsible for

validating image signatures. This function is registered within the SeCiCallbacks structure in ntoskrnl, specifically

during the final steps of the SepInitializeCodeIntegrity routine. The core idea of the attack is to overwrite the

CiValidateImageHeader pointer with the address of any kernel routine that always returns STATUS_SUCCESS (0x00),

thereby bypassing signature checks since the return value is usually the only element considered validating a signature

check.

In this case, the limitation of the attack65 lies in its requirement66 for a write-what-where capability. Simply zeroing

the entry corresponding to the CiValidateImageHeader routine within the SeCiCallbacks structure would result in

a system crash.

59https:// en.wikipedia.org/wiki/Kernel_Patch_Protection
60https:// learn.microsoft.com/en-us/windows-hardware/drivers/bringup/device-guard-and-credential-guard
61https:// learn.microsoft.com/en-us/windows-server/ virtualization/hyper-v/hyper-v-overview?pivots=windows
62https:// learn.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
63https://www.cybereason.com/blog/code-integrity-in-the-kernel-a-look-into-cidll
64https://www.cybereason.com/blog/code-integrity-in-the-kernel-a-look-into-cidll
65https://www.fortinet.com/blog/ threat-research/driver-signature-enforcement-tampering
66https:// blog.cryptoplague.net/main/research/windows-research/ the-dusk-of-g_cioptions-circumventing-dse-with-v
bs-enabled

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 21

George-Boole-Weg 4 www.troopers.de

69124 Heidelberg www.insinuator.net

https://en.wikipedia.org/wiki/Kernel_Patch_Protection
https://learn.microsoft.com/en-us/windows-hardware/drivers/bringup/device-guard-and-credential-guard
https://learn.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-overview?pivots=windows
https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://www.cybereason.com/blog/code-integrity-in-the-kernel-a-look-into-cidll
https://www.cybereason.com/blog/code-integrity-in-the-kernel-a-look-into-cidll
https://www.fortinet.com/blog/threat-research/driver-signature-enforcement-tampering
https://blog.cryptoplague.net/main/research/windows-research/the-dusk-of-g_cioptions-circumventing-dse-with-vbs-enabled
https://blog.cryptoplague.net/main/research/windows-research/the-dusk-of-g_cioptions-circumventing-dse-with-vbs-enabled
https://ernw.de
https://troopers.de
https://insinuator.net

8.3 Historical Exploitation: Pimp My PID

Another possible attack using a vulnerable driver consists of replacing the access token67 of the attacker’s process with

the access token of the system process. This grants the attacker full system-level privileges. The effectiveness of this

technique68 lies in the fact that access tokens are not monitored by HVCI or KPP. However, the attack requires the ability

to write an arbitrary value specifically at the address of the system process’s access token. As such, it depends on a

write-what-where capability, which cannot be achieved with a write-zero-where capability alone.

8.4 Historical Exploitation: Nullify the Security Descriptor

Like the previous attack69, a write-zero-where primitive can be used to achieve nearly the same effect. The approach

consists of removing the security descriptor70 from the object representing the system process, thereby bypassing any

security checks when accessing it. For an object without a security descriptor, Windows grants unrestricted access

to all users. Applying this to the system process allows the attacker’s process to read from, write to, or execute code

within the system process’s context, effectively enabling indirect access to kernel memory.

Although this attackmeets all our criteria, it has beenmitigated71 in Windows 10 version 1607 (Build 14393). Attempting

to access an object with a nullified security descriptor now triggers a Blue Screen of Death with a BAD_OBJECT_HEADER

error. However, the blog post72 describing this mitigation suggests that nullifying the Discretionary Access Control List

(DACL)73 within the security descriptor may still allow the original behavior to be reproduced. This alternative approach

has not yet been tested by us but warrants further investigation on the latest Windows versions.

67https:// learn.microsoft.com/en-us/windows/win32/secauthz/access-tokens
68https:// v1k1ngfr.github.io/pimp-my-pid/
69https:// v1k1ngfr.github.io/pimp-my-pid/
70https:// learn.microsoft.com/en-us/windows/win32/secauthz/security-descriptors
71https://www.lrqa.com/en/cyber-labs/analysing-the-null-securitydescriptor-kernel-exploitation-mitigation-in-the-lat
est-windows-10-v1607-build-14393/

72https://www.lrqa.com/en/cyber-labs/analysing-the-null-securitydescriptor-kernel-exploitation-mitigation-in-the-lat
est-windows-10-v1607-build-14393/

73https:// learn.microsoft.com/en-us/windows/win32/secauthz/dacls-and-aces

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 22

George-Boole-Weg 4 www.troopers.de

69124 Heidelberg www.insinuator.net

https://learn.microsoft.com/en-us/windows/win32/secauthz/access-tokens
https://v1k1ngfr.github.io/pimp-my-pid/
https://v1k1ngfr.github.io/pimp-my-pid/
https://learn.microsoft.com/en-us/windows/win32/secauthz/security-descriptors
https://www.lrqa.com/en/cyber-labs/analysing-the-null-securitydescriptor-kernel-exploitation-mitigation-in-the-latest-windows-10-v1607-build-14393/
https://www.lrqa.com/en/cyber-labs/analysing-the-null-securitydescriptor-kernel-exploitation-mitigation-in-the-latest-windows-10-v1607-build-14393/
https://www.lrqa.com/en/cyber-labs/analysing-the-null-securitydescriptor-kernel-exploitation-mitigation-in-the-latest-windows-10-v1607-build-14393/
https://www.lrqa.com/en/cyber-labs/analysing-the-null-securitydescriptor-kernel-exploitation-mitigation-in-the-latest-windows-10-v1607-build-14393/
https://learn.microsoft.com/en-us/windows/win32/secauthz/dacls-and-aces
https://ernw.de
https://troopers.de
https://insinuator.net

8.5 New Exploitation: write-anything-where

Another potential approach using the write-zero-where primitive would be to clear specific flags within a protected

process74 (or a protected process light75) such as an antivirus service76 like Windows Defender77. However, this method

would not enable actions such as loading an unsigned driver.

To be frank, the capabilities provided by the write-zero-where primitive are quite limited. Due to existing Windows mit-

igations and the restricted set of targetable objects, exploitation opportunities are increasingly constrained. However,

the second issue in WinpMem offers more than just a write-zero-where capability. In addition to writing zeros, the

IOCTL_REVERSE_SEARCH_QUERY IOCTL allows writing a physical address, a non-null 64-bit value representing a mem-

ory page. But this address is random and difficult to predict from user mode. And as anyone knows, manipulating

random values in kernel-mode is not a good idea. But this is exactly what we are going to do, with a write-anything-

where capability.

Given the guarantee that the physical address cannot be null78, this value can be used to overwrite certain fields in the

system with a non-zero value. In the context of Boolean logic, any value not explicitly defined as false is interpreted as

true. Consequently, if specific values are set to false for security purposes, overwriting them with a non-zero value may

effectively enable or bypass restricted functionality.

In practice, possessing both read-what-where and write-what-where capabilities is functionally equivalent to having ac-

cess to a kernel debugger79. When analysing how WinDbg operates in kernel mode, it becomes clear that it heavily

relies on the undocumented KdSystemDebugControl routine within ntoskrnl.exe. This routine follows a philosophy

close to the one of DeviceIoControl80 in user mode: it accepts a command code specifying the desired debugging

operation (such as reading or writing memory, accessing the system bus, or interacting with MSRs), along with an input

buffer (typically for write operations) and an output buffer (typically for read operations).

Crucially, the effectiveness of KdSystemDebugControl is determined by a set of initial condition checks. As illustrated in

the figure below, the routine verifies several global flags: KdpBootedNodebug, KdPitchDebugger, KdDebuggerEnabled

74https://www.crowdstrike.com/en-us/blog/evolution-protected-processes-part-1-pass-hash-mitigations-windows-8
1/

75https://medium.com/@boutnaru/the-windows-security-journey-ppl-protected-processes-light-831d5f371004
76https:// learn.microsoft.com/en-us/windows/win32/services/protecting-anti-malware-services-
77https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Cyber-Sicherheit/SiSyPHus/Microsoft_Antivirus.pdf?__blo
b=publicationFile&v=2

78Although highly unlikely in practice, if a memory page would have a physical address set to zero, the returned address can
easily be verified. In such a case, a new physical address can be obtained by providing the WinpMem driver with the virtual
address of any other valid memory page, different from the one previously associated with the zero physical address.

79https:// learn.microsoft.com/en-us/windows-hardware/drivers/debugger/setting-up-kernel-mode-debugging-in-w
indbg--cdb--or-ntsd

80https:// learn.microsoft.com/en-us/windows/win32/api/ ioapiset/nf-ioapiset-deviceiocontrol

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 23

George-Boole-Weg 4 www.troopers.de

69124 Heidelberg www.insinuator.net

https://www.crowdstrike.com/en-us/blog/evolution-protected-processes-part-1-pass-hash-mitigations-windows-81/
https://www.crowdstrike.com/en-us/blog/evolution-protected-processes-part-1-pass-hash-mitigations-windows-81/
https://medium.com/@boutnaru/the-windows-security-journey-ppl-protected-processes-light-831d5f371004
https://learn.microsoft.com/en-us/windows/win32/services/protecting-anti-malware-services-
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Cyber-Sicherheit/SiSyPHus/Microsoft_Antivirus.pdf?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Cyber-Sicherheit/SiSyPHus/Microsoft_Antivirus.pdf?__blob=publicationFile&v=2
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/setting-up-kernel-mode-debugging-in-windbg--cdb--or-ntsd
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/setting-up-kernel-mode-debugging-in-windbg--cdb--or-ntsd
https://learn.microsoft.com/en-us/windows/win32/api/ioapiset/nf-ioapiset-deviceiocontrol
https://ernw.de
https://troopers.de
https://insinuator.net

, and KdLocalDebugEnabled. In practice, if either KdDebuggerEnabled or KdLocalDebugEnabled is set to zero, all

debugging operations through the Windows kernel are disabled.

The KdDebuggerEnabled flag is initialized by the KdEnableDebuggerWithLock function, which is called during ker-

nel initialization based on the system’s boot configuration. Specifically, this is the /DEBUG flag81 set via bcdedit82.

The KdLocalDebugEnabled variable is set by the KdInitSystem routine, also during initialization, after parsing the

dbgsettings83 configuration to check for the /LOCAL flag84. This flag enables local kernel debugging, where the de-

bugger operates on the same system being debugged.

While local debugging is more restricted than remote debugging (e.g., breakpoints in kernel-mode processes are not

feasible due to potential system-wide freezes), it still allows reading from and writing to memory. This capability is

confirmed in Microsoft’s own documentation85 on local kernel-mode debugging.

Figure 8: Reverse engineering of the KdSystemDebugControl function responsible to handle kernel-mode debugging
operations.

81https:// learn.microsoft.com/en-us/windows-hardware/drivers/devtest/bcdedit--debug
82https:// learn.microsoft.com/en-us/windows-server/administration/windows-commands/bcdedit
83https:// learn.microsoft.com/en-us/windows-hardware/drivers/devtest/bcdedit--dbgsettings
84https:// learn.microsoft.com/en-us/windows-hardware/drivers/devtest/bcdedit--dbgsettings
85https:// learn.microsoft.com/en-us/windows-hardware/drivers/debugger/performing-local-kernel-debugging

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 24

George-Boole-Weg 4 www.troopers.de

69124 Heidelberg www.insinuator.net

https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/bcdedit--debug
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/bcdedit
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/bcdedit--dbgsettings
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/bcdedit--dbgsettings
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/performing-local-kernel-debugging
https://ernw.de
https://troopers.de
https://insinuator.net

Figure 9: Part of Microsoft’s documentation related to the possibilities provided by local kernel debugger.

Returning to the KdSystemDebugControl routine, it requires that both the KdDebuggerEnabled and

KdLocalDebugEnabled variables be non-zero to grant access to kernel-debugging operations. With the write-

anything-where capability, it is possible to safely modify these values. Specifically, the KdLocalDebugEnabled flag is

stored in ntoskrnl as a 32-bit value, immediately followed in memory by the KdPrintRolloverCount value, which is

used only in non-critical contexts within the KdSetDbgPrintBufferSize and KdLogDbgPrint routines.

Figure 10: Display of the KdLocalDebugEnabled global value in ntoskrnl.exe, from IDA software.

The case of the KdDebuggerEnabled value is more complex. This value is an 8-bit field, likely representing a

BOOLEAN, and is preceded in memory by the KdEventLoggingEnabled 8-bit value. By default, on a debugged sys-

tem, KdDebuggerEnabled is set to zero, and it may be desirable to maintain this state to avoid disrupting the overall

system. To achieve this, it may be necessary to obtain multiple physical addresses: one whose least significant byte is

zero, followed by another whose least significant byte is non-zero. In practice, locating such physical addresses is not

particularly difficult since many follow this pattern.

The addresses of the KdDebuggerEnabled and KdLocalDebugEnabled global variables can be indirectly obtained by

a user-mode application through the NtQuerySystemInformation function. By design86, this function allows leak-

86https:// recon.cx/2013/slides/Recon2013-Alex%20Ionescu-I%20got%2099%20problems%20but%20a%20kernel%20poin
ter%20ain%27t%20one.pdf

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 25

George-Boole-Weg 4 www.troopers.de

69124 Heidelberg www.insinuator.net

https://recon.cx/2013/slides/Recon2013-Alex%20Ionescu-I%20got%2099%20problems%20but%20a%20kernel%20pointer%20ain%27t%20one.pdf
https://recon.cx/2013/slides/Recon2013-Alex%20Ionescu-I%20got%2099%20problems%20but%20a%20kernel%20pointer%20ain%27t%20one.pdf
https://ernw.de
https://troopers.de
https://insinuator.net

ing the base address of ntoskrnl.exe. Once the base address is acquired, the user-mode application can map87 the

ntoskrnl.exe file in user-mode memory and locate the global variables either by disassembling the initial opcodes of

the KdSystemDebugControl routine or by using debugging symbols88. This process yields the offset of the global vari-

ables relative to the mapped base address. Adding this offset to the leaked base address provides the virtual addresses

of the global values.

Figure 11: Display of the KdDebuggerEnabled global value in ntoskrnl.exe, from IDA software.

The next step is to translate the virtual address of the memory page containing these global variables into its cor-

responding physical addresses. This can be achieved using the IOCTL_REVERSE_SEARCH_QUERY operation. With the

physical address in hand, it becomes possible to modify these global values via the same IOCTL by setting both flags to

one. In this scenario, the output address supplied to the IOCTL corresponds to the virtual address of the global variable

to be modified.

Consequently, a small program can be developed to emulate a kernel debugger, enabling direct interaction with the

Windows kernel from user mode.

Is this solution stable? Frankly, it may lack stability. Modifying these values on a multicore CPU system is inherently

challenging due to potential cache synchronization issues. Although our tests did not reveal any specific protections,

such as Kernel Patch Protection (KPP), their implementation in future versions cannot be ruled out. Testing onWindows

10 demonstrated reasonable success, albeit with occasional sporadic crashes. Such exploits are inherently difficult to

stabilize across all Windows versions. Therefore, this method is better regarded as a proof of concept rather than a

fully reliable exploit.

87https:// learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-mapviewoffile
88https:// learn.microsoft.com/en-us/windows/win32/dxtecharts/debugging-with-symbols

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 26

George-Boole-Weg 4 www.troopers.de

69124 Heidelberg www.insinuator.net

https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-mapviewoffile
https://learn.microsoft.com/en-us/windows/win32/dxtecharts/debugging-with-symbols
https://ernw.de
https://troopers.de
https://insinuator.net

Is this solution stable? Frankly, this solution can lack stability. Indeed, changing these values on a machine with a

multicore CPU is always challenging since cache synchronization issues could happen. Also, it is not impossible that on

some version of Windows, a protection with KPP could have been (or could be) implemented. Tested on Windows 10, it

worked quite well despite some sporadic crashes sometimes (but not always, some due to WinpMem’s instability), but

these kinds of exploits are always complex to stabilize on every version of Windows. Definitively more a proof of concept

than a reliable exploit.

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 27

George-Boole-Weg 4 www.troopers.de

69124 Heidelberg www.insinuator.net

https://ernw.de
https://troopers.de
https://insinuator.net

9 Conclusion

This type of vulnerability is relatively common in driver development. In the case of WinpMem, CVE-2024-10972

and CVE-2024-12668 have been assigned and addressed in the latest release. Although TOCTOU attacks are a well-

established concept, they remain effective against a significant number of drivers, particularly those employing the

METHOD_NEITHER approach to handle user-mode buffers. The second issue, related to the “write-zero-where” prim-

itive, is especially notable due to its potential to demonstrate a “write-anything-where” scenario. This exploitation

capability is unprecedented, to the best of our knowledge. This opens new opportunities for exploitation in situations

where a conventional “write-what-where” primitive is not feasible.

Remediating vulnerabilities in a driver is never a trivial matter. Beyond the implementation of the actual bug fix, it

also necessitates the deployment of an updated driver version. In the case of WinpMem, this process was further

complicated by two major challenges.

The first challenge is not specific to WinpMem but applies broadly to all drivers: once a driver is vulnerable, it remains

exploitable indefinitely. This is because, to run, a driver must be digitally signed89 and installed with administrative

privileges. From an attacker’s perspective, any driver that has already been signed and contains a vulnerability can be

reused on any system. This concept is known as ‘Bring Your Own Vulnerable Driver’ (BYOVD), as demonstrated by the

extensive list of such drivers publicly available on platforms like loldrivers.io90.

The second issue pertains to the challenges ofmaintaining and updating open-source projects. WinpMem ismaintained

by a small yet dedicated community, moreover, there is no built-in update mechanism in the projects. Furthermore, the

presence of unofficial forks (often based on partial or direct code copies) complexifies the issue. As a result, users must

proactively verify and apply updates themselves, a task that many are unlikely to perform regularly. Additionally, driver

signing requires a valid code-signing certificate, with a signing private key of which must be kept secure. WinpMem

has publicly stated91 that it no longer signs new driver versions, instead recommending the use of test signing mode92.

While this mode is unsuitable for production or professional environments, it implies there is no operational, securely

signed, and patched version of WinpMem readily available. This presents a significant concern: either someone else

must sign the driver for broader distribution (potentially perpetuating the use of an inherently vulnerable design) or

users must self-sign it for private use. Neither scenario provides a robust or scalable solution.

As explained, the fact that WinpMem device’s access is limited to administrators restrict drastically the possibilities of

exploitation. Nonetheless, the fact that WinpMem can be used in an already compromised environment by design still

89https:// learn.microsoft.com/en-us/windows-hardware/drivers/ install/ driver-signing
90https://www.loldrivers.io/
91https:// github.com/Velocidex/WinPmem/commit/afc9e0633b2bfe21267db47278dfa6d3ef3547f3#diff-06572a96a58dc51
0037d5efa622f9bec8519bc1beab13c9f251e97e657a9d4ed

92https:// learn.microsoft.com/en-us/windows-hardware/drivers/ install/ test-signing

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 28

George-Boole-Weg 4 www.troopers.de

69124 Heidelberg www.insinuator.net

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/driver-signing
https://www.loldrivers.io/
https://github.com/Velocidex/WinPmem/commit/afc9e0633b2bfe21267db47278dfa6d3ef3547f3#diff-06572a96a58dc510037d5efa622f9bec8519bc1beab13c9f251e97e657a9d4ed
https://github.com/Velocidex/WinPmem/commit/afc9e0633b2bfe21267db47278dfa6d3ef3547f3#diff-06572a96a58dc510037d5efa622f9bec8519bc1beab13c9f251e97e657a9d4ed
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/test-signing
https://ernw.de
https://troopers.de
https://insinuator.net

make the exploitation context relevant. But may be the most relevant point regarding WinpMem is its ability to provide

by design a read-what-where, no matter the security of the system. This kind of driver (and it is not the only one) is by

design a vulnerability, since it breaks one of the most fundamental security rules applying in any operating system: the

memory separation between the user-mode and the kernel-mode.

As previously discussed, access to the WinpMem device is restricted to administrators significantly limits the potential

for exploitation. Nevertheless, its intended use within already compromised environments continues tomake it relevant

in exploitation scenarios. Perhaps the most critical concern regarding WinpMem, however, lies in its inherent ability to

provide unrestricted “read-what-where” access, regardless of the system’s security posture. Drivers of this kind (and

WinpMem is not unique in this regard) constitute a vulnerability by design, as they violate one of the most fundamental

principles of operating system security: the strict separation between user-mode and kernel-mode memory.

We presented everything in the recon-202593 edition. We detail the vulnerability and exploitation in the slides of the talk

and in this blog post (or may be a series of blog post related to driver’s vulnerabilities may follow), illustrating that “the

cobbler always wears the worst shoes”, as the old saying goes.

93https:// cfp.recon.cx/recon-2025/ featured/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 29

George-Boole-Weg 4 www.troopers.de

69124 Heidelberg www.insinuator.net

https://cfp.recon.cx/recon-2025/featured/
https://ernw.de
https://troopers.de
https://insinuator.net

	1 Handling
	1.1 Document Status and Owner
	1.2 Document Version History

	2 Introduction
	3 Memory Reminder
	4 What Matters for Drivers?
	5 Diving Into WinpMem Drivers
	6 WinpMem Vulnerability I: TOCTOU
	7 WinpMem Vulnerability II: write-zero-where
	8 Exploitation of the WinpMem Vulnerability II
	8.1 Historical Exploitation: gCiOptions
	8.2 Historical Exploitation: The Swan Song for DSE Tampering
	8.3 Historical Exploitation: Pimp My PID
	8.4 Historical Exploitation: Nullify the Security Descriptor
	8.5 New Exploitation: write-anything-where

	9 Conclusion

		2025-10-01T16:25:55+0200
	Julian Suleder

