

Version: 1.0

Date: 7/17/2016

Author: Felix Wilhelm

XENPWN: BREAKING PARAVIRTUALIZED

DEVICES

ERNW NEWSLETTER 54/ JULY 2016

TABLE OF CONTENT

0. ABSTRACT __ 5

1. INTRODUCTION __ 6

2. BACKGROUND ___ 8

2.1 Shared Memory 8

2.2 Double Fetches 9

2.3 X64 Virtualization 12
2.3.1 Virtualization Fundamentals 12

2.3.2 Intel VT-x 13

2.3.3 Intel EPT 15

2.3.4 Nested Virtualization 16

2.4 Virtual Machine Introspection 17

2.5 Hypervisor Architecture 18
2.5.1 Xen 18

2.5.2 Hyper-V 21

2.5.3 KVM 22

2.5.4 Summary 23

3. ANALYSIS ___ 25

3.1 Security of Inter-Domain Communication 25

3.2 Approaches to Vulnerability Discovery 27
3.2.1 Source Code Review 27

3.2.2 Static Analysis 28

3.2.3 Fuzzing 29

3.2.4 Memory Access Tracing and Pattern Analysis 31

3.3 Requirements for Memory Access Tracing 32

3.4 Conclusion 34

4. DESIGN ___ 35

4.1 Analysis Algorithms 35
4.1.1 Attack Surface 35

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 3

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

4.1.2 Double Fetches 37

4.2 Approaches for Full System Memory Tracing 39
4.2.1 Bochs 39

4.2.2 QEMU 40

4.2.3 Hardware-Assisted Virtualization 41

4.2.4 Comparison 42

4.3 Proposed Architecture 43
4.3.1 Hypervisor 44

4.3.2 Virtual Machine Introspection 45

4.3.3 Trace Collector 46

4.3.4 Trace Storage 47

4.4 Walkthrough 48

4.5 Limitations 49

4.6 Conclusion 50

5. IMPLEMENTATION __ 51

5.1 Components 51
5.1.1 Hypervisor 51

5.1.2 Virtual Machine Introspection 52

5.1.3 Trace Storage 53

5.2 Trace Collector 53
5.2.1 Identification of Shared Memory Pages 54

5.2.2 Tracing of Memory Accesses 55

5.2.3 Trace Entries 57

5.2.4 Attaching & Detaching 60

5.3 Analysis Algorithms 60
5.3.1 Attack Surface 61

5.3.2 Double Fetches 61

5.4 Target Specific Code 63
5.4.1 Xen 65

5.4.2 KVM 66

5.4.3 Hyper-V 67

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 4

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

6. EVALUATION __ 68

6.1 Methodology 68

6.2 Evaluation Setup 69

6.3 Results 71
6.3.1 Performance 71

6.3.2 Inter-domain communication characteristics 73

6.3.3 Attack Surface Analysis 75

6.3.4 Double Fetch Vulnerabilities 78

6.3.5 Notes on exploiting xen-pciback 84

6.4 Restricting the Impact of Compiler Optimizations 86

6.5 Conclusion 88

7. CONCLUSION __ 90

7.1 Future Work 90

8. BIBLIOGRAPHY __ 92

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 5

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

0. Abstract

Shared Memory is an important mechanism for efficient inter-process communication. When one side of

the communication has higher privileges than its counterpart, the shared memory interface becomes a

trust boundary and privileged code operating on it needs to be audited for security vulnerabilities.

In this thesis we present an approach based on memory tracing to discover vulnerabilities in shared

memory interfaces. In contrast to other works in this area, the presented implementation is based on

hardware-assisted virtualization and uses manipulation of EPT permissions to intercept memory

accesses.

We evaluate our implementation against paravirtualized device drivers for the Xen hypervisor, which use

shared memory for inter-domain communication. Besides successfully identifying the privileged

components responsible for processing untrusted shared memory data, the presented analysis algorithms

are used to discover three novel security vulnerabilities in security critical backend components.

This newsletter is a slightly revised version of the authors master thesis “Tracing Privileged Memory

Accesses to Discover Software Vulnerabilities” which can be found in full under the following URL:

https://os.itec.kit.edu/downloads/ma_2015_wilhelm_felix__discover_software_vulnerabilities.pdf

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/
https://os.itec.kit.edu/downloads/ma_2015_wilhelm_felix__discover_software_vulnerabilities.pdf

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 6

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

1. Introduction

Memory pages shared between different execution contexts are a fundamental communication

mechanism of modern computer systems. In many cases one side of the communication has higher

privileges and needs to protect itself against malicious behavior of its counterpart. Examples for this

situation include communication between userland and kernel space [20], sandbox implementations of

modern web browsers [44] and the inter-domain communication of popular hypervisors [8].

In addition to classic software vulnerabilities, such as missing validation and verification, shared memory

interfaces can suffer from a special type of race condition called double fetch vulnerability. Bochspwn [20]

first demonstrated how these issues can be used for local privilege escalation attacks against the

Windows kernel and how memory tracing can be leveraged to identify these vulnerability types

automatically. While Bochspwn was successfully applied in the context of user-kernel interaction, its

reliance on an instrumented version of the Bochs CPU emulator leads to an extremely high overhead and

bad performance. This limits its suitability for the analysis of more complex software environments.

The objective of this thesis is the discovery of software vulnerabilities in the inter- domain communication

interfaces of mainstream hypervisors. To achieve this goal, this thesis presents and implements an

approach to discover such vulnerabilities by tracing and analyzing all privileged read and write accesses to

shared memory pages. We improve upon the research presented in [20], by designing and implementing a

toolkit for memory access tracing and pattern analysis using hardware-assisted virtualization and

modified page table permissions.

In comparison to approaches based on software emulation, this reduces the passive overhead significantly

and allows the targeted tracing of shared memory communication even in very complex environments. The

presented implementation is based on the open source Xen hypervisor [3] as platform for nested

virtualization and uses Simutrace[34] as highly efficient trace storage, allowing for the collection and

offline analysis of even long running traces. Furthermore, large parts of the design and implementation

are completely target agnostic, making them reusable for analysis of different hypervisors and even other

shared memory interfaces such as sandbox implementations.

The effectiveness of the presented approach is evaluated by analyzing the security aspects of

paravirtualized devices in Xen. Besides being able to identify the privileged components that can be

targeted by an attacker, our implementation

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 7

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

is able to discover three novel security vulnerabilities affecting the Xen hypervisor. These vulnerabilities

were reported to the Xen maintainers and were assigned XSA-155[52].

The remainder of this work is structured as follows: Chapter 2 discussed several core concepts required

for this thesis. Besides introducing shared memory communication and double fetch vulnerabilities in

general, the different types of virtualization on the Intel x64 architecture are presented. This is followed by

an introduction into the concept of virtual machine introspection and a detailed discussion of the overall

architecture of three mainstream hypervisors. Chapter 3 highlights the problem of security for inter-

domain communication and reviews several different ways for discovering vulnerabilities in these

interfaces. After this, the proposed design of our solution is presented in Chapter 4. Important aspects of

the implementation are reviewed in Chapter 5, before the results of the performed evaluation are finally

presented in Chapter 6. The thesis finishes with a final conclusion and a discussion of further research

topics in Chapter 7.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 8

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

2. Background

This chapter introduces the technical concepts and terminology required for the rest of this thesis. Section

2.1 introduces the idea of shared memory communication and the reasons for its popularity. In

comparison to other IPC mechanisms, shared memory can suffer from a special type of vulnerability

called double fetch, which is introduced in Section 2.2. The chapter continues with Section 2.3, which

describes virtualization on the Intel x64 architecture, concentrating on the Intel VT-x extensions. After an

introduction into Virtual Machine Introspection (VMI) in Section 2.4, the chapter concludes with an overview

about the architectures of three mainstream hypervisors in Section 2.5.

2.1 Shared Memory

Shared memory is one of most widespread inter-process communication (IPC) methods [43, 41]. The main

reason for its popularity is the performance advantage in comparison to other message based IPC

mechanisms such as pipes or message queues, which are implemented on top of system calls.

Figure 2-1: Memory copies during IPC

As described in [41] and visualized in Figure 2.1, passing data between two processes using a message

oriented approach requires at least two additional copies: The sender triggers a copy from user space to

kernel, while the receiving side needs to copy into the other direction from kernel back into the user space

process.

For shared memory IPC there is no such overhead. Instead, there is a one-time setup cost when the

shared memory section is created. While the exact APIs to initialize differ between operating systems or

hypervisors, the implementation is always the same: One or more physical memory pages are shared by

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 9

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

mapping them into the virtual address space of multiple execution contexts. When talking about operating

systems, an execution context normally just corresponds to another user space process, but the

mechanism stays the same when talking about different virtual machines. After this page mapping is

created, data transfers between two contexts do not require any involvement of the kernel (or hypervisor).

Instead, simple memory reads and writes can be used, reducing the need for expensive copy operations.

Depending on the exact use case, zero copy protocols are possible, which have very good performance

characteristics.

Some kind of synchronization method between the communication partners is required when shared

memory is used. To do this, all standard synchronization techniques such mutexes, locks and semaphores

can be used on top of shared mem- ory [41]. However, there is an important limitation to note: These

synchronization methods require all communication partners to participate, they cannot enforce it. No

widespread shared memory APIs include functionality comparable to a mandatory file lock, which is

enforced by the underlying layer. This is normally not a problem when all communication participants

operate on the same privilege level. While a misbehaving side could interrupt the communication, this

cannot be considered a security issue. If, however, the shared memory interface is a trust boundary and

one side has less privileges, such issues can become much more interesting from a security perspective.

Even though there is a large amount of research concerning the safe use of shared resources, they

concentrate on insecure behavior triggered by incorrect use of synchronization primitives. A recent

example is ThreadSanitizer [37], an instrumentation based data race detector for C and C++ software.

However, this research is only partially applicable, because it does not take the existence of a malicious

communication partner into account. High-level synchronization methods are not enforced in shared

memory interfaces, which means they can simply be ignored, triggering potential vulnerabilities.

One example for such a vulnerability type is called double fetch, which will be introduced in the following.

2.2 Double Fetches

Double fetches are a special type of Time-of-Check-to-Time-of-Use (TOCTTOU) bugs [20]. TOCTTOU bugs

exist when data can be manipulated between verification or validation - the time of check - and the time of

use.

The probably best known examples of TOCTTOU bugs affect file system accesses [6]: A privileged process,

for example a setuid binary, checks that a file is owned by an unprivileged user and then performs a

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 10

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

modification to this file on behalf of the user. If the permission check and the modification are separate

actions, an attacker can replace the file with a symbolic link to a system file. If the timing is right

and this replacement happens right after the check is performed but before the actual modification

happens, unauthorized manipulation of important files might be possible.

While, TOCTTOU bugs exist in different software layers and in different environments, the core principle is

always the same. A description of this bug class can be found in [1] published in 1976:

"Whenever there is a "timing window" between the time the control program verifies a parameter and the

time it retrieves the parameter from shared storage for use, a potential security flaw is created. This is

because contemporary operating systems allow a user to have two or more activities (processes)

executing concurrently."

We use the term double fetch to describe potential TOCTTOU vulnerabilities where the shared medium is a

shared memory region. This terminology was introduced by Fermin J. Serna in a post on the Microsoft

Security and Defense blog [28]. One of the main inspirations for this work is Bochspwn[20], a Bochs based

toolkit to discover double fetch vulnerabilities in the Windows kernel. While Bochspwn uses software

emulation to generate memory traces and does not target shared memory communication, it introduces

several of the core concepts of this thesis. Besides being the first to try to discover double fetch

vulnerabilities using memory access tracing, they also introduce the ability to separate tracing and

analysis steps. In addition, the possible extension of the approach with more analysis algorithms and by

using hardware-assisted virtualization is mentioned even when no details regarding the implementation of

these extensions are given.

Most published examples of double fetch vulnerabilities affect the interface between user space and

kernel: Listing 1 shows a vulnerability in the sendmsg system call handler of the Linux kernel fixed in

2005[10]. In line 5 the copy_user macro is invoked to dereference a pointer into user space and copy the

value of the cmsg_len field into a local variable umclen. umclen is used to calculate a length for the final

data structure, which is allocated using a call to kmalloc in line 15. However, before the data is copied into

the allocated structure in line 20, umclen is again initialized with the value from user space in line 18.

This is a classic example of a double fetch vulnerability. If an attacker is able to win the race condition and

exchange the value of cmsg_len between the first and the second access, an exploitable heap overflow can

be triggered. While this specific bug can be easily identified in the source code, this is not always the case.

Listing 2 shows CVE-2013-1278 first presented in [20]. The vulnerable code pattern was discovered in

multiple system call handlers, this specific example is extracted from the nt!ApphelpCacheLookupEntry

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 11

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

function. edi stores a user space pointer and the ProbeForWrite function is used to make sure that the

pointer at offset 0x18 of

Listing 1. Double fetch in sendmsg system call.

edi is a writable user space address. When the arguments are passed to memcpy, this pointer is fetched a

second time from user space memory. If the data is exchanged between these two accesses, arbitrary

kernel memory can be corrupted. As shown in [20], this can be used for a local privilege escalation attack

against vulnerable systems. Because no source code for nt!ApphelpCacheLookupEntry is publicly

available, it cannot be evaluated if the double fetch is the result of two C pointer dereferences or of a

compiler optimization.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 12

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

Listing 2. Double fetch in nt!ApphelpCacheLookupEntry

The exploitability of double fetch vulnerabilities is discussed in detail in [20]. On single core systems, races

might not be winnable under all circumstances if a context switch never occurs between the time of check

and the time of use. However, for multi core systems even very short race conditions can be exploited as

long as a loss does not trigger a system crash or a similar irreversible condition. Because modern

virtualization environments are always operating in a multi core environment, we consider even short race

conditions as exploitable for the purpose of this thesis.

2.3 X64 Virtualization

A core topic of this thesis is virtualization on the Intel 64bit (x64) architecture. The main evaluation targets

are the inter-domain communication mechanisms of popular hypervisors and the proposed and

implemented solution heavily relies on hardware- assisted virtualization. Therefore, this section

introduces the core challenges of virtualization on Intel systems and discusses the hardware virtualization

features added in recent processor generations. In order to concentrate on mechanisms relevant for this

thesis, several topics such as interrupt virtualization and System Management Mode are ignored in the

following.

2.3.1 Virtualization Fundamentals

In a traditional system the operating system has full control over all hardware resources. A virtualized

system introduces a new software layer called virtual machine monitor (VMM) or hypervisor. The VMM is

responsible for managing access to the hardware for each running virtualized system. Each virtualized

system, also called virtual machine (VM), consists of virtual memory, one or more virtual CPUs and

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 13

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

virtualized devices. In general, a VMM gives a guest operating system the illusion to be running on real

physical hardware. Hypervisor can be separated into type-1 and type-2 hypervisors[43]: type-1 hypervisors

run directly on the hardware, while type-2 hypervisors run on top of a normal operating system.

One important requirement in general purpose virtualization is that one VM can not influence the

execution of other VMs running on the same physical host. This means virtual memory, CPUs and devices

must be isolated from each other and access to privileged operations on the real hardware must be

restricted. Privileges on x64 are implemented using a ring model[18]: A processor always operates in a

ring between 3 and 0, where ring 0 is the most privileged operation mode. Only code running in ring 0 has

accesses to privileged instructions, the complete memory space and memory mapped or port based IO. Of

course normal OS kernels operate under the assumption that they are running in ring 0. However,

unrestricted access to all these privileged operations violates the isolation requirement of isolation. There

are two practical approaches to solve this problem in software: binary translation and pravirtualization.

Binary translation was pioneered by VMWare[43]. The hypervisor dynamically replaces privileged

operations with emulated versions that operate on the virtual hardware. Paravirtualization, first

implemented by the Xen hypervisor[3], requires modification of the guest operating system to replace all

privileged operations with calls to a hypervisor API. The guest kernel is then moved to a less privileged

ring, while the hypervisor is the only code still operating in ring 0. Both approaches are quite successful

but they have important downsides. Binary translation does not require modification of the guest operating

system and can reach a surprisingly high performance level, but the engineering effort for creating a

production ready hypervisor using this approach cannot be overestimated. On the other hand,

paravirtualization uses the standard hardware protection mechanisms and allows for a very small and

simple hypervisor, but requires modification of the guest system. Because of these difficulties with pure

software based approaches and the rising demand for virtualization on the x64 architecture, Intel

introduced the VT-x extensions [45] in 2005. Nowadays hardware-assisted virtualization using the Intel VT

extension or the similar implementation by AMD are by far the most relevant virtualization types in

productive use.

2.3.2 Intel VT-x

VT-x adds two additional CPU modes [45]: VMX non-root operations and VMX root operations. The ring

privilege level still exist in both operation modes, so code could be operating in ring 3 in VMX root mode or

in ring 0 in non-root mode. The hypervisor runs in root mode, while all guests operate in non-root mode.

Context switches between root mode and non-root mode are called VM entries and VM exits. These

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 14

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

transitions and the operation of the processor in non-root mode is managed using a newly introduced data

structure called virtual machine control structure(VMCS). The VMCS is separated into six logical groups

[18]:

Guest-State. Saves the processor state on a VM exit. Is used to restore it on a VM entry.

Host-State. Processor state is loaded from here on a VM exit.

VM execution control fields. These fields control processor behavior when operating in non-root mode.

VM entry control fields. These fields control the VM entry behavior. VM exit control fields. These fields

control the VM exit behavior.

VM exit information fields. These fields contain information about the most recent VM exit.

Management of the VMCS can be performed by using a number of newly introduced instructions that are

only available in root mode: They include VMPTRLD and VMPTRST to load and store pointers to the

currently used VMCS. VMREAD and VMWRITE to read and write VMCS fields and VMLAUNCH or

VMRESUME to trigger a VM entry.

Code executing in VMX root mode behaves the same way as before, but when the CPU is operating in non-

root mode, privileged operations can be trapped and handled by the hypervisor. Certain instructions like

WRMSR or CPUID always trigger a VM exit, the behavior of others can be configured using the execution

control fields in the VMCS. Interestingly, many privileged instructions do never trigger an VM exit because

they transparently operate on VM specific data when executed in non-root mode. This includes all

instructions involving interrupt and exception handling [18].

The trap and emulate approach enabled by these additions is sufficient to protect the hypervisor and other

guests from a misbehaving or malicious virtual machine: All instructions that directly access hardware

features can be trapped and emulated safely. Because all accesses to the CR3 register are intercepted,

the hypervisor can enforce a strict separation between its own linear address space and those used by

different VMs. In early versions of Intel VT, the hypervisor was required to keep track of the relation

between a guest physical and the machine physical address space using a mechanism called shadow page

tables[39]. When using this approach, a hypervisor is forced to intercept all page faults or page table

updates in the VM to keep the shadow page tables in sync with their virtual equivalent. Of course, this

triggers a high amount of VM exits, degrading the overall performance. To improve performance, Intel

decided to introduce an additional hardware feature called extended page tables (EPT).

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 15

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

2.3.3 Intel EPT

Extended page table is Intel’s name for a hardware feature also known as second level address translation

or nested paging. EPT introduces the concept of guest- physical address [18]. The guest is in full control of

its own page tables and address translation inside the virtual machine works the same as on a non-

virtualized system. But after the normal address translation has finished, the processor performs an

additional translation step going from the guest-physical to the real physical address. As shown in Figure

2.2, EPT translation uses an extended page table pointer (EPTP) stored in the VMCS execution control

fields and performs a 4 level deep page-walk through EPT paging structures, very similar to the one

performed for normal address translation.

Figure 2-2. Intel EPT Address Translation.

The main advantage of EPT is the reduction of VM exits and the offloading of virtualized memory

management to the hardware layer. This means the hypervisor code can be significantly simplified and

does not have to be concerned with any page table updates performed by the guest. The memory

separation is enforced by the hardware as long there is no overlap between the EPT structures used by

two virtual machines or the memory pages of the hypervisor itself.

All EPT structures including the EPT page table entry contain fields controlling the access permissions of

the referenced physical memory page(s). For example, this can be used by the hypervisor to share a read-

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 16

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

only page with his guests. When a VM performs a disallowed access on a guest-physical memory address,

an EPT violation is triggered leading to a VM exit. This behavior is completely transparent to the virtual

machine and can be used for implementing copy-on-write optimizations or to collect data about the

behavior of the VM.

2.3.4 Nested Virtualization

Nested virtualization describes the concept of running a hypervisor as a virtual machine on top of another

hypervisor. In order to keep the terminology unambitious, we call the outer hypervisor the level 0 (L0)

hypervisor and the inner one level 1 (L1). The L1 hypervisor is just a special type of L1 guest and can run in

parallel with other guests and even additional L1 hypervisors. Finally, level 2 (L2) guests run on top of the

L1 hypervisor. Figure 2.3 visualizes these connections.

Figure 2-3. Nested virtualization terminology

The main use case for nested virtualization is the ability to run a hypervisor in a cloud environment [53].

More recently, Microsoft started to use its Hyper-V hypervisor as a way to isolate security critical

components from the normal operating system starting with Windows 10[19]. Because this practically

turns the Windows 10 operating system into a Hyper-V VM, support for nested virtualization is required to

install additional virtualization software on the system. Currently most mainstream hyper- visors only

have partial support for nested virtualization, but current development efforts [29, 53] indicate that this will

change in the next years.

Mixing two different types of virtualization can often work without any problems. A L0 hypervisor based on

Intel VT can host a L1 hypervisor based on binary translation or para-virtualization without any special

support. It starts to get more complex when two hypervisors based on Intel VT are nested, which of course

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 17

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

is the most relevant use case. The L1 hypervisor operates in non-root mode but stills needs the

impression that it is operating in root mode. This means all Intel VT management instructions need to be

trapped and emulated by the L0 hypervisor.

Recent extensions of Intel VT try to minimize additional VM exits introduced by nested virtualization as

much as possible [53]. For example, VMCS Shadowing enables the L1 hypervisor to operate on a shadow

VMCS structure without triggering VM exits. Using these features, Intel states a performance loss of only

20% comparing a L1 system to a L2 one [29].

2.4 Virtual Machine Introspection

The concept of Virtual Machine Introspection (VMI) was first introduced in [15] and was defined as an

„approach of inspecting a virtual machine from the outside for the purpose of analyzing the software

running inside it“. VMI is traditionally used in the context of malware detection and analysis. In this context

it has a number of advantages compared to more traditional host based intrusion detection systems (IDS).

In a standard host based IDS or sandbox, a software agent is running in the same system as the malware.

This requires the agent to rely on the trustworthiness of the operating system, which might be a

dangerous assumption if the malware is able to compromise the OS kernel [15, 14]. Furthermore, a

hypervisor based inspection can be almost completely hidden from the analyzed system. This means that

it is difficult for a malware to simply detect that it is running in a protected or analyzed environment and

stop execution [49]. Other features offered by virtualization, like the ability to create and restore snapshots

of a running system are also very helpful in the context of malware analysis, making VMI a logical next

step.

The hypervisor has complete access to all state of the virtual machine, including CPU registers, memory

and the virtual hard drive. This means that at any point in time the current state of the VM can be

completely analyzed. In addition, the ability to trap on specific actions of the running malware, is a

requirement for efficient analysis. This is quite trivial for software based emulation but more difficult for a

hypervisor based on hardware-assisted virtualization. While a very limited form of this trapping could be

implemented using software or hardware breakpoints, the authors of [49] describe a more scalable

approach by using EPT permissions: By marking specific pages of VM memory as non-executable, the

execution of the VM can be traced by analyzing EPT violations. This idea of using EPT permissions as a way

to trap on actions performed in the virtual machine is a core concept used in this thesis and will be

discussed in-depth in later chapters.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 18

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

2.5 Hypervisor Architecture

Even though all mainstream hypervisors for the Intel x64 architecture are at least partially based on the

Intel VT instruction set and the hardware virtualization support, their overall architecture differs quite

strongly. In this chapter the architectures of three of the most popular hypervisors are discussed: Xen,

Hyper-V and KVM. These particular hypervisors were chosen for multiple reasons. First of all, all three are

widely used and have a mature and feature rich ecosystem. Second, due to the open source nature of KVM

and Xen, there architecture is very well documented and implementation details can be easily discovered

by reading the available source code. While Hyper-V is a proprietary closed-source hypervisor, the overall

architecture is quite similar to the one of Xen. The paravirtualized device drivers used by Hyper-Vare also

implemented on top of shared memory [48], making it well suited for this thesis.

In the following discussion, special focus rests on the interfaces used for inter-domain communication as

this part of the architecture is the most relevant one for the topic of this thesis.

2.5.1 Xen

Figure 2-4. Xen architecture

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 19

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

Xen[3] is an open source type 1 hypervisor with support for ARM, x86 and x64. Originally a research project

at Cambridge University, the first version of the Xen hypervisor was released in 2003. With no Intel VT

instruction set available at that point in time, the authors were the first to introduce paravirtualization on

the x86 architecture. Instead of software emulation or complex binary translation as per- formed by other

implementations at this time, Xen’s paravirtualized virtual machines run modified versions of the guest

operating system. The modified kernels do not rely on privileged instructions or direct hardware access

and instead communicate with the hypervisor using a set of APIs. Modern versions of Xen also support

Intel VT and unmodified guest systems, running as so called hardware virtualized machines (HVM) guests.

Figure 2.4 gives an overview of the Xen architecture and the naming conventions used. The core Xen

hypervisor operates directly on top of the hardware and hosts a number of virtual machines called

domains. The management domain, called dom0 is a normal Linux system running all the management

tools required for configuration and operation of the hypervisor and its guests. The management tools

communicate with the hypervisor using the hypercall API, an interface very similar to the normal system

call interface used by operating systems. The decision to put all management software into a dedicated

guest system makes it possible to keep the hypervisor itself relatively simple.

Next to the privileged management domain, two normal unprivileged guests, called domU are shown in

the Figure. The first domU is a paravirtualized guest. It runs a modified guest kernel, that does not interact

with the real hardware in any way. Instead, the kernel communicates directly with the hypervisor using the

hypercall API. Even though this is the same API that is also used by the management stack, all privileged

functionality is restricted to dom0, and the domU kernel is only allowed to perform actions that affect its

own VM.

The paravirtualized guest also requires virtual hardware devices. These are implemented in two parts, the

frontend and backend components: The frontend driver runs in domU and plays the role of a normal

hardware device driver in the guest OS. When an action is performed on the virtual device, the frontend

driver uses a communication mechanism called XenBus to send a request to the backend driver operating

in dom0. Depending on the type of device the backend driver can process the request completely in

software or forward it to a real hardware device.

In comparison to paravirtualized guests, HVM domains do not require special support for Xen. CPU and

memory are virtualized with the help of Intel VT and EPT, but the domain still needs access to hardware

devices. To enable this, Xen uses device emulation offered by the QEMU system emulator[4]. By default

each running HVM guest has a corresponding QEMU process running in dom0. QEMU emulates old

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 20

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

standard devices that are well supported by all mainstream operating systems. Thanks to this, no special

drivers are required and a completely unmodified operating system can run in the domain. Still, in practice

pure HVM guests are rarely used. Instead of the relatively slow emulated devices offered by QEMU, the

HVM guests can use the same frontend drivers as paravirtualized guests. This means that the inter-

domain communication between frontend and backend drivers is a potential attack surface irregardless of

the domain type, making it particular interesting.

The core mechanism used for inter-domain communication in Xen is shared memory. Sharing memory

between two domains is implemented using a data structure called grant table and the grant_table_op

hypercall that operates on it[8]. Using the grant table functionality, two domains can share physical

memory pages between each other. This mechanism is used by the paravirtualized drivers to implement

I/O rings for performing the actual communication. An I/O ring is a simple ring buffer used for

asynchronous communication. The same ring can be used for sending as well as receiving data and a

mechanism called event channel is used for notification after new data was written into the I/O ring [8].

While the use of I/O rings based on shared memory pages is not a hard requirement for paravirtualized

drivers, the protocol has been adopted by all standard Xen drivers. Device drivers that require large data

transfers between domains like block or network devices often implement on demand mapping of shared

memory pages for bulk data transfers.

The split driver model used by Xen gives a large amount of freedom regarding the implementation of the

backend driver. Depending on performance or security requirements, a backend driver could be

implemented as an independent user space process, a QEMU extension or as a Linux kernel module. In

some cases this is even configurable by the end user. For example, the backend component of the Xen

blkfront driver that is responsible for offering virtual block devices to a guest VM can be the xen-blkback

kernel module, the xen_disk implementation of QEMU or one of multiple variants of blktap, a user space

daemon.

From a security standpoint, the most relevant aspect of the Xen architecture is the privileged role of the

management domain dom0. Even though it is a virtual machine it has access to the complete state of all

other guests and can directly communicate with the hardware. For most environments, this makes a

compromise of dom0 as critical as a compromise of the Xen hypervisor itself. Consequently, attacks on the

backend components of paravirtualized drivers are very relevant. Even more so for backend components

that are implemented in the kernel, because a vulnerability in one of these can directly lead to a full dom0

compromise.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 21

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

2.5.2 Hyper-V

Figure 2-5. Hyper-V architecture

Hyper-V is a closed source type-1 hypervisor developed by Microsoft. In contrast to earlier Microsoft

virtualization products such as Virtual PC, Hyper-V is completely based on hardware-assisted

virtualization with support for Intel VT as well as AMD SVM. Besides being advertised as the main

virtualization solution for Windows servers, Hyper-V is used in the Xbox One console, the Microsoft Azure

cloud[48], and as an additional security layer on the client starting with Windows 10[19].

The Hyper-V architecture is strongly inspired by Xen as can be seen in Figure 2.5. Instead of calling the

guests domains, they are called partitions and the root partition has the same role as dom0. Accordingly,

domU’s are called child partitions. As in Xen, all management components are running in the root

partition, keeping the hypervisor itself as small as possible.

While all partitions use hardware-assisted virtualization for CPU and memory, Hyper- V differentiates

between enlightened and unenlightened partitions, depending on their use of paravirtualized device

drivers and the hypercall API. Unenlightened partitions depend on emulated devices and do not know

about the hypercall API, while enlightened partitions rely on paravirtualized devices and hypercalls to

enable better performance. Instead of using QEMU for device emulation, this functionality is included in

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 22

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

the VM Worker Process (VMWP). Each running child partition has a worker process assigned, which is

heavily restricted using the Windows permission model [48]. The split driver model of Xen for

paravirtualized devices is also used by Hyper-V: The backend component is called Virtualization Service

Provider (VSP) and the frontend part is the Virtualization Service Client (VSC).

Communication between two partitions occurs with a communication mechanism called VMBus and guest

physical address descriptor lists (GPADL) used for data transfer. The VMBus interface implements a ring

buffer similar to the I/O rings used by Xen. Large data transfers are implemented by mapping the guest

pages into the address space of the root partition.

In summary, the Hyper-V architecture is more or less identical with the one used by Xen. Fully

paravirtualized domains are not available, but other than that each Xen component has a corresponding

replacement in Hyper-V. Consequently, the same security properties that were described in the last

section also hold true for Hyper-V.

2.5.3 KVM

KVM, which stands for Kernel-based Virtual Machine, is an open-source hypervisor for Linux systems on

the x86 architecture [22]. KVM requires support for hardware- assisted virtualization and supports both

the Intel VT and AMD SVM extensions. In comparison to the textbook design of Xen and Hyper-V, KVM is

deeply integrated into the Linux kernel leading to a more unconventional architecture as visualized in

Figure 2.6. It consists of a Linux kernel module (kvm.ko) that adds virtualization capabilities to a Linux

system. While this deep integration with Linux makes the architecture less clean than the previous two

examples, it has a number of advantages [21]: First of all, large parts of the kernel code can be reused to

implement the hypervisor functionality. This includes scheduling, memory and power management. In

addition, communication involving a guest VM, the host VM, and the hypervisor only requires a single full

context switch, because host and hypervisor share a single address space. This can give a better

performance than the completely isolated address space of the Xen and Hyper-V hypervisors.

KVM also depends on QEMU for device emulation, similar to Xen. However, the integration between QEMU

and KVM goes much further: The complete physical address space of each guest is mapped into its

corresponding QEMU process. This makes KVM virtual machines look similar to a normal user space

process and allows for easy enforcement of memory limits and swapping [21].

Paravirtualized drivers are implemented on top of the virtio mechanism. Virtio is designed to be a

hypervisor independent standard for the implementation of paravirtualized devices [46]. The virtio

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 23

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

specification describes how device initialization, teardown and configuration of virtual devices are

performed and defines the virtqueue structure as the main way to transfer data between frontend and

backend components. Again, the virtqueue is implemented on top of shared memory. Because the guest

memory is mapped into the QEMU process, no special way of mapping guest pages is required. Instead,

the host can simply access the queue memory using the mapping provided by the QEMU process.

While the exact implementation of the virtio mechanism and the general architecture of KVM differ quite a

bit from Xen and Hyper-V, the attack surface and security impact of virtio backend components is identical

to the one of the other presented implementations.

Figure 2-6. KVM architecture

2.5.4 Summary

In summary, all of the three presented hypervisors have support for paravirtualized device drivers. All

implementations operate with a split driver model, where a backend component is running in the

management system while a frontend component is executing in the virtual machine. Most importantly,

the communication between these two components always involves shared memory pages, making them

an apt evaluation target for this thesis. The security boundary enabled by the backend components is well

known by the hypervisors’ developers. All three discussed implementations offer ways to restrict the

privileges of backend components to reduce the impact of a vulnerability: Hyper-V uses the Windows

permission model to restrict the worker process responsible for implementing user space backend

drivers. KVM uses SELinux for the same purpose and Xen has the ability to move the QEMU process to a

single purpose stub domain with restricted privileges. Still, for performance reason many backend

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 24

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

components are directly implemented in the kernel of the management system, making full isolation

impossible.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 25

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

3. Analysis

Shared memory, meaning memory pages simultaneously accessible from two different execution

contexts, is a core mechanism used for local inter process communication. Data transfers over shared

memory pages do not suffer from any significant overhead. In addition, arbitrary complex data structures

can be exchanged without the need for serialization. In some cases, the two sides communicating over

shared memory have different privileges, making the interface a potential target for attacks. Examples for

this situation include the communication between user-space software and the kernel, and sandbox

implementations of modern web browsers like Google Chrome [44].

This thesis concentrates on shared memory communication in the context of system virtualization: As

discussed in Section 2.5, all mainstream hypervisors use shared memory for high performance inter-

domain communication. Most prevalent use cases for virtualization have high security requirements. In

many cases, some of the virtual machines running on a physical host have to be considered malicious. This

could be because non-trusted consumers operate them like in a public cloud system, the VM is used for

malware analysis or simply because the applications running inside the virtual system have a large

external attack surface. Of course, this makes the inter-domain communication interface a trust boundary

and a particularly interesting attack surface to analyze.

The goal of this thesis is the identification and implementation of an approach for efficient vulnerability

discovery in shared memory interfaces with a special focus on inter-domain communication. In the

following sections, different approaches to discover vulnerabilities in these interfaces are compared.

Following this, the requirements of the memory tracing based approach chosen for this thesis and its

suitability for finding different vulnerability types are discussed.

3.1 Security of Inter-Domain Communication

The discussion of hypervisor architectures in Section 2.5 already introduced the concept of inter-domain

communication: Besides offering a way to communicate directly with the hypervisor, all discussed

solutions also have a way to enable direct communication between different virtual machines. These

mechanisms are used for the implementation of paravirtualized devices. In contrast to the traditional

emulation approach discussed in the last chapter, paravirtualized devices require the installation of

special drivers in the virtual machine. However, they compensate for this by offering a bigger feature set

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 26

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

and much higher performance. For example, [27] demonstrates a bandwidth improvement of more than

50% when comparing a paravirtualized virtio device to an emulated network device.

Figure 3-1. Paravirtualized device architecture.

Paravirtualized devices are implemented using two components as shown in Figure 3.1:

1. A backend driver in the management domain is responsible for translating virtualized requests

like disk writes or network packets to actual actions. In some cases, this can be a simple as

forwarding a buffer to the real hardware devices, in others the resulting logic might be

completely implemented in software. Backend drivers can run in both user and kernel space.

2. A frontend driver in the guest plays the role of a normal device device driver. Instead of

communicating with actual hardware, requests send to the driver are instead relayed to the

backend driver using a shared memory interface.

Of these two main components, the backend driver is the security critical one. Vulnerabilities in the

backend driver that can be triggered from the frontend can allow a malicious virtual machine to influence

the execution of the management domain. Depending on the vulnerability and the design of the backend

the impact of such vulnerabilities can range from information leaks over denial of service to a complete

compromise of the management domain. As our discussion in Chapter 2.5 demonstrates, full access to the

management domain is practically equivalent to a full compromise of the hypervisor. Due to their low-level

nature, backend drivers are generally implemented in C or C++ making them prime targets for classic

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 27

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

vulnerabilities like buffer overflows, out-of-bounds accesses and integer overflows. Examples for such

vulnerabilities in backend drivers are CVE-2011-1750 [11], a heap-based buffer overflow in the disk

backend driver of KVM and CVE-2015- 2361 [12], a unspecified buffer overflow in the Hyper-V storage

backend. Because the communication between the two components needs to be as fast as possible,

shared memory regions are used for data transfers. This means that in addition to the classic issues

highlighted above, bug classes that are specific to shared memory communication such as double fetches,

which were introduced in Section 2.2, have to be kept in mind. However, no such vulnerabilities in

paravirtualized devices were published until now, which leads to the impression that the underlying inter-

domain interfaces were not heavily audited for this type of vulnerability before.

In summary, inter-domain communication opens a significant attack surface in virtualized environments.

From an attacker’s point of view, the backend driver is not too different from a remote network daemon

with the added risk of using shared memory as communication medium. The next section discusses

different approaches that can be used to discover vulnerabilities in these interfaces, as well as their

advantages and disadvantages. The lack of any public research about double fetch vulnerabilities in inter-

domain communication makes them a focus of our thesis.

3.2 Approaches to Vulnerability Discovery

The standard approaches for discovering security vulnerabilities such as manual source code review,

static analysis and fuzzing are also applicable to inter-domain communication. In this section the three

most popular techniques are evaluated and an alternative approach based on memory access tracing and

pattern analysis is presented. Besides evaluating their general advantages and limitations, their suitability

to discover double fetch vulnerabilities is a main decision criterion.

3.2.1 Source Code Review

The classic approach for finding vulnerabilities in software is manual source code review. While a skilled

auditor can often discover vulnerabilities that are very hard to identify using other techniques, a

completely manual approach suffers from several downsides: In-depth source code review is a very time-

consuming and slow process. This makes it almost impossible to get full coverage of a large application

without a significant resource investment. In addition, software as complex as a virtualization solution

includes many different components of which only some have a relevant attack surface. Without an

advanced understanding of the overall architecture, even identifying these relevant components can be a

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 28

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

difficult process. For example, backend drivers in Xen can be implemented as Linux kernel modules, as

QEMU extensions or as independent user-space applications.

Certain types of vulnerabilities are very hard to detect using source code analysis. Wang et al. [47]

demonstrate multiple examples of so called unstable code that incorrectly depends on undefined behavior

of the C language. Because the compiler has a high amount of freedom in the presence of undefined

behavior, seemingly valid security checks can disappear depending on the optimization level used. Without

a full understanding of the C language reference, such issues will be missed by most security reviewers.

As described in Section 2.2, double fetch vulnerabilities can be introduced by compiler optimization hiding

them from an auditor doing pure source code based analysis. Finally, source code might not even be

available to a security researcher. Proprietary applications like Hyper-V are only available in binary form,

making source code review impossible in practice. While a manual security review of the compiled

application is possible in theory, the difficulty and time requirements rise significantly in comparison to a

source code review.

Keeping these downsides in mind, manual source review is not an ideal first step to identify vulnerabilities

in inter-domain communication. The large amount of involved components makes it hard to identify the

relevant attack surface manually and some interesting vulnerability types, such as the ones described in

[47], are very hard to detect on a source code level. In particular, source code review does not seem to be

sufficient to detect double fetch vulnerabilities introduced by compiler optimizations. Still, code review is

often needed to gain a better understanding of a vulnerability or to discover more complex vulnerabilities

that cannot be triggered by other approaches. The identification of interesting attack surfaces by

automated means followed by a complementary source code review seems to be a good approach. The two

most prevalent automated techniques are fuzzing and static analysis, which are presented in the next

sections.

3.2.2 Static Analysis

An alternative to manual code review is the use of static analysis algorithms. In Principles of Program

Analysis, the authors characterize program analysis as "static [..] techniques for predicting safe and

computable approximations to the set of values or behaviors arising [..] at run-time" [31]. While mainly

used by compilers for performing safe optimizations of source code, the same techniques can also be used

to discover security vulnerabilities. In theory, static analysis can be performed on either source code or the

compiled binary. In practice, the information loss involved in the compilation process and the complexity of

binary code makes it hard to perform analysis on large binaries without additional information sources like

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 29

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

debugging symbols [40]. Even if source code is available, static analysis of virtualization related code is

difficult in comparison to high-level user space applications: For example, even parsing the source code of

relevant functions, which is a prerequisite for any further analysis, is difficult due to the heavy use of

compiler specific extensions or inline assembly [5].

In comparison to a dynamic approach, static analysis can get a much higher code coverage. Because no

execution is required, code paths that only trigger under rare circumstances can still be covered.

However, even ignoring classic problems such as the state explosion issues [31], this complete coverage is

only possible when all involved components are identified correctly. If the user of the static analysis tool

does not know that a certain user space application is part of the attack surface, it will not be analyzed

leading to potential false negatives. When using source code based static analysis, vulnerabilities that are

introduced by compiler optimizations can also not be discovered.

There are a number of examples for sophisticated and security oriented static analysis tools targeting C

software [5, 38]. However, they are either commercial products that are not freely available [5], do not

have any available implementation [38] or are not well suited for large software stacks such as hypervisors

[9]. In addition, these solutions generally operate on source code, making them unusable for analysis of

proprietary software. The development of a static analysis framework specialized for this thesis would

require a significant implementation effort. Furthermore, such a tool needs a correct model of the

language semantics, which is non-trivial for high level C code and much more difficult when low level

implementation details like Intel VT are involved.

In summary, static analysis requires correct identification of the involved components and significant

implementation effort. Source code based static analysis is not usable for proprietary target systems and

can miss vulnerabilities created by compiler optimizations such as double fetches. On the other hand,

binary static analysis is still an open research area without significant results for system security. For

these reasons, static analysis is not the best approach for this thesis, which makes investigating

techniques based on dynamic analysis a logical next step.

3.2.3 Fuzzing

Fuzzing can be defined as a

"highly automated testing technique that covers numerous boundary cases using invalid data (from files,

network protocols, API calls, and other targets) as application input to better ensure the absence of

exploitable vulnerabilities"[32].

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 30

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

The relative simplicity of fuzz testing, the availability of powerful fuzzing tools like sulley [42] or the more

recent American fuzzy lop(AFL) [2] and their surprising efficiency in discovering software vulnerabilities

make fuzzing by far the most popular automated vulnerability discovery technique. Fuzzers targeting

webbrowsers, javascript engines and multi-media files are responsible for a majority of publicly dis-

closed bugs in these types of software. Fuzzing is nowadays considered an important part of the software

development cycle by vendors such as Microsoft [2, 16].

Fuzzers can be separated into two main categories: Black-box fuzzers are not interested in the inner-

working of their target and just feed input until it misbehaves or crashes. In contrast, white-box fuzzer try

to optimize their coverage of the tested application using various techniques. SAGE [16], a white-box fuzzer

developed by Microsoft, uses symbolic execution based on a SMT solver to generate input that triggers as

many code paths as possible. Besides the differentiation between black and white-box testing, the method

used to generate inputs categorizes fuzzer. Generative fuzzer generate samples based on a specification

[32] that describes the structure of valid inputs in a parsable way. The alternative is mutation based

fuzzing that works by manipulating a known set of good sample inputs. Both approaches have their

advantages, but the lower implementation effort leads to a higher prevalence of mutation based fuzzing.

Recently, AFL has shown the high success rate of fuzzing by combining mutation based fuzzing guided by

detailed code coverage and has discovered a high number of critical vulnerabilities in a wide range of

popular software [2].

These results make it seem like fuzzing is well suited to the problem of discovering vulnerabilities in inter-

domain communication. However, there are several important downsides:

 Stateful interfaces. The communication between frontend and backend drivers often requires

correct initialization and notifications to occur. Without a full understanding of these

requirements, a fuzzer will not be able to generate requests that are considered valid. While this

problem can be bypassed by making sure the fuzzer behaves like a valid frontend driver, this

requires development time for each analyzed interface.

 Fragility. The targeted paravirtualized drivers play a critical role in the stability of the virtual

machine [26]. Simply sending invalid data to the backend will lead to an invalid state and crash

the virtual machine almost immediately. Even worse, if such an invalid state involves the

corruption of persistent data, for example when fuzzing a virtualized hard disk, a simple reboot is

not sufficient to get back to a valid state. This means that some mechanism for fast restoration of

a VM state is a requirement.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 31

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

 Unsuitable for certain vulnerability types. Fuzzer are not the best tool to find race condition

vulnerabilities such as double fetches, which were introduced in Section 2.2. To discover such an

issue, the fuzzer has to generate multiple suitable requests in a very constrained time-frame and

actually trigger the race condition. For short races, this is pretty much impossible.

In summary, fuzzing is a promising approach to vulnerability discovery, but does not seem to be well suited

to our objective.

3.2.4 Memory Access Tracing and Pattern Analysis

Memory access tracing is widely used for development, debugging and performance evaluations [34]. In

addition, full system traces including memory accesses as well as executed instructions can be used to

identify and analyze malicious software or exploits [13]. Memory access tracing as a technique to discover

vulnerabilities was first presented in [20]. As discussed in Section 2.2, the authors use the Bochs CPU

emulator to generate traces of all virtual memory addresses accessed by a running virtual machine. They

analyze these traces to identify potential double fetch vulnerabilities. As the authors mention, this

approach can be generalized to identify other types of vulnerabilities by performing different analysis

algorithms on the collected data. A related but not identical approach is the use of execution traces to aid

in vulnerability discovery, using dynamic taint analysis or concolic execution as described in [36].

We define Memory Access Tracing and Pattern Analysis as a two-step technique for discovering

vulnerabilities: First, a detailed memory trace is collected during execution of the target application or

system. This trace is then processed by one or more analysis algorithms to discover potential

vulnerabilities, privileged code working with attacker controlled data or other information that can indicate

the existence of a vulnerability. The types of data stored in a memory trace depends on the requirements

of the analysis algorithm and limitations introduced by the tracing approach. A useful separation can be

created by discerning between algorithms that require access to the actual memory content and those

that only need meta data like the accessed address and the accessing instruction. The simplest example

for the second type of analysis is an algorithm that extracts all privileged instructions accessing attacker

influenced memory address and uses this information to identify the overall attack surface of a complex

environment. On the other hand, a trace that contains memory contents could be used to identify address

leaks from a privileged to an unprivileged context or the direct use of user controlled pointers. Of course

only a small subset of potential vulnerabilities can be directly identified by using pattern analysis.

However, the other discussed approaches can profit from insights generated, making the approach more

generally useful.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 32

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

We consider memory access tracing as a suitable approach for this thesis due to two main reasons: A

limited implementation effort and the effectiveness in discovering double fetch vulnerabilities. In

comparison to the development of a full static analyzer for hypervisor communication, a memory tracing

and analysis toolset only requires a moderate implementation effort. Additionally, double fetch

vulnerabilities are very well suited for discovery by memory access tracing as demonstrated by [20]. A

potential double fetch vulnerability can be detected by searching the trace log for at least two memory

fetches from the same address in a single context. In comparison, the other vulnerability discovery

techniques presented above are less suitable for this vulnerability type: Manual source code analysis does

not discover double fetches introduced by compiler optimization, which is also the case for source code

based static analysis. As already discussed, fuzzing is not a reliable way to discover race conditions which

only leaves static analysis of binary code as a sufficient alternative.

However, statically identifying all references to shared memory regions is non-trivial, making memory

access tracing a simpler alternative.

In summary, memory access tracing followed by pattern analysis is the most practical approach for

discovering double fetch vulnerabilities in the course of this thesis. Still, the goal to trace hypervisor

communication adds a number of requirements that need to be kept in mind. The next sections discuss

these requirements in depth.

3.3 Requirements for Memory Access Tracing

In general there are plenty of methods we could use to generate memory traces. How- ever, the use case

of analyzing inter-domain communication has special requirements that limit the set of suitable

approaches, as discussed in the following:

 Low-level Communication. A fundamental requirement to use memory access tracing for our

purpose is the ability to collect low level communication. Inter-domain communication can

involve kernel modules and user space applications in all participating domains. Furthermore,

depending on the exact implementation even hypervisor code running in root mode might operate

on the exchanged data. This makes approaches like METRIC [24] or PIN tools [23] that are

restricted to user space tracing unsuitable.

 Versatility. The chosen approach should be usable to analyze different hypervisors. This discards

all approaches that require significant patches or modifications to the target software. In

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 33

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

particular, the existence of source for the target hypervisor should not be a requirement to allow

for the analysis of software such as Hyper-V or VMWare ESXi.

 Scalability and Performance. While most hypervisors can be configured in a very minimal

configuration, the goal to find vulnerabilities with dynamic analysis requires us to execute as

much of the existing functionality as possible. This requires that the system can continue to

execute with a manageable performance overhead, even when tracing is performed. In addition,

tracing should not be limited to short time-frames or small data amounts to identify

vulnerabilities in time and memory intensive functionality. In general, we consider every approach

that prevents normal interactive use of the system as unfit.

 Configurable. For our use case, only a very small subset of memory accesses is interesting. Every

access that does not operate on a shared memory region can be safely ignored. Approaches that

allow to only trace accesses to a number of configured memory traces are therefore preferable

to an approach that forces indiscriminate processing of all memory accesses

As discussed in the last section, the data collected during memory traces varies based on the

requirements of the later analysis step. However certain data is required for almost all useful analyses. In

the following, we list the mandatory data points that need to be collected for each memory access:

 Address. The accessed physical memory address. Because different virtual ma- chines will

access the same memory address using different virtual addresses, storing the physical address

is required for correlation.

 Type. The type of access: read, write or execute.

 Instruction data. The instruction triggering the memory access. Full access to the instruction

bytes is preferable to the storage of only the instruction address, because it allows a complete

offline analysis without access to the system memory or binaries.

 Size. On x64 memory can accessed with different byte granularity. To correctly identify

overlapping accesses and the accessed data we need to store this information in the trace.

 Context. Information that describe which virtual machine and which component is responsible for

the access. This can be a VM name and a process identifier or lower level information such as the

address of the page directory.

In addition to these required information, approaches that allow the collection of the transferred data are

especially interesting. While not required to discover double fetch bugs, several other vulnerability types

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 34

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

can be detected when memory data is available. If the chosen approach is able to collect this data, an

extension of the developed tool to include such algorithms is feasible for the future.

3.4 Conclusion

This chapter evaluated different approaches to discover vulnerabilities in shared memory interfaces in the

context of inter-domain communication. Based upon the discussion of hypervisor architectures presented

in the last chapter, the suitability of different analysis methods were compared. Besides having a realistic

implementation effort, a main decision criteria was the ability to discover double fetch vulnerabilities,

which were introduced in Section 2.2. For this reasons, memory accessing tracing followed by pattern

analysis was chosen as the approach used for this thesis. Following this decision, the requirements for

memory access tracing of inter-domain communication were enumerated. This leads up to the next

chapter, where the overall design of our proposed solution is introduced.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 35

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

4. Design

Based on the analysis performed in Chapter 3 we consider memory access tracing the most promising

approach for discovering vulnerabilities in inter-domain communication. In this chapter the proposed

design of our toolkit for performing memory access tracing and vulnerability analysis on these

communication interfaces is presented. A particular emphasis is laid on the efficient discovery of double

fetch vulnerabilities.

In the next Section, two analysis algorithms that operate on memory access traces are highlighted. Based

upon their requirements and the general requirements for tracing inter-domain communication presented

in Section 3.3, different approaches to full system memory tracing will be compared. This is followed by a

description of the proposed design of our memory tracing toolkit and an introduction into the different

components involved. The chapter finishes with a walkthrough of the tracing, storage and analysis of a

single memory access.

4.1 Analysis Algorithms

Analysis algorithms operate on a collected memory trace. They should not require access to the running

target system, which makes it possible to perform the analysis even after the target system is shut down

or reconfigured. The algorithms work by iterating over the collected memory access traces and searching

for interesting patterns. When needed, additional data like instruction bytes can be passed as input to

supplement the analysis. The final output of an analysis algorithm is a human readable representation of

results or a machine readable output suitable for processing by other tools.

To validate the approach chosen for this thesis, we propose two analysis algorithms: attack surface and

double fetch. The attack surface algorithm simply iterates through all logged read accesses and maps

them to the responsible process or kernel module. The double fetch algorithm tries to identify double

fetch vulnerabilities in privileged components. The design of both algorithms is highlighted below.

4.1.1 Attack Surface

The core idea of this analysis is very simple. By identifying all code segments that operate on shared

memory regions, the attack surface can be mapped. For the purpose of this thesis, we define attack

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 36

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

surface as all code that operates on attacker controlled input. One of the main insights of the vulnerability

discovery discussion in Section 3.2 was the problem of identifying all privileged components that are

involved during execution of a virtualized system. While not all of these components will directly operate

on shared memory, every component that does is an interesting target for further analysis.

On its own the output of the attack surface analysis does not indicate the existence of vulnerabilities, but it

can support other analysis steps such as manual source code analysis. In addition, the results can be used

to compare different tracing runs and their code coverage, indicating ways to trigger as much backend

code as possible.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 37

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

4.1.2 Double Fetches

The double fetch algorithm works similar to the one presented in [20]: Two or more read accesses to the

same memory address, that are performed in a single privileged execution context can indicate the

existence of a double fetch vulnerability. While this approach sounds simple, there are a two potential

issues that must be addressed: Overlapping reads and the definition of an execution context. Overlapping

reads can happen due to the different memory access sizes supported by the x64 architecture. A 4-byte

read from the address 0x1008 and a 8-byte read from the address 0x1004 would both access the bytes at

0x1008 to 0x100C. This means that both the accessed address and the access size needs to be known to

perform the double fetch analysis. Otherwise, potential double fetches could be missed when only

matching addresses are taken into account, introducing false negatives.

Figure 4-1. Double fetch: False positive.

A second difficulty is the definition of a single execution context. When backend and frontend drivers reuse

the same shared memory pages for more than one request, multiple accesses to the same address will

happen sooner or later. However, they do not necessarily indicate a double fetch vulnerability and instead

can happen when multiple frontend requests are handled by the same backend function. Figure 4.1 shows

an example for such behavior. The two read accesses to the shared memory address 0x10 are triggered by

two unique requests and do not have anything to do with each other, but they still access the same

memory address triggering a false positive by a naive approach.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 38

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

The proposed algorithm only considers multiple read accesses when no memory accesses by the

unprivileged domain happen in between. This is related to the methodology used by Bochspwn, where only

reads that occur during the handling of a single system call are correlated [20]. The described approach

removes the mentioned false positives but can theoretically introduce false negatives. An example for this

is shown in Figure 4.2: When scheduling stops the execution of the privileged domain right between two

read accesses, the unprivileged domain starts to run and performs some kind of unrelated operation on

the shared memory page. Because the two read accesses to 0x10 do not seem to happen in a single

execution context, they would be missed. However, chances for this behavior are quite low. The risk of

false negatives becomes acceptable when keeping in mind that the described scheduling must happen

every time a vulnerable function is executed. Because tracing is done over longer periods of time, most

relevant functions will be triggered multiple times.

Figure 4-2. Double fetch: False negative.

Not every discovered double fetch can be assumed to indicate a vulnerability. For example, a function

could be repeatedly checking for a mutex, fetch a non-security critical value multiple times or perform

sufficient validation after every fetch. This means manual analysis is still required. To facilitate this, the

double fetch analysis should print all instructions accessing a memory address, as well as the involved

module or process names.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 39

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

4.2 Approaches for Full System Memory Tracing

The requirement to be able to analyze low level communication, as discussed in Section 3.3, limits the

number of approaches suited to our objective. We need the ability to trace memory accesses on all

software layers running on the system. Because modification to the target software were ruled out due to

the goal of supporting multiple targets, performing some kind of system virtualization is the only way to

intercept all memory accesses. In the following three, virtualization approaches are compared: The Bochs

x86 CPU emulator used in [20], QEMU used by [13] and similar tools and a hypervisor based on hardware-

assisted virtualization.

4.2.1 Bochs

Bochs [25] is a highly portable x86 emulator entirely implemented in software. While most other

emulators focus on offering the best performance possible, Bochs’ main goal is portability. To support

running on as many host architectures as possible, it does not use any advanced hardware features or

dynamic recompilation and instead relies on a pure emulation based approach. This makes it possible to

run Bochs even on embedded devices with a low amount of available memory.

The Bochs developer take great care to make the emulation as exact as possible, allowing the execution of

many different operating systems, including Windows 8 in 32- and 64bit versions. In particular the CPU

emulated by Bochs includes hardware virtualization features as discussed in Section 2.3. This means

hypervisors such as Hyper-V or Xen can be executed inside a Bochs VM making it a possible target

platform for our research.

Bochs offer a feature rich instrumentation API, which is used by [20] to trace memory accesses. The

biggest downside of Bochs is its slow performance in comparison to other approaches. The memory

access instrumentation added in [20] further slows down the emulation by a factor of 5. A main reason for

this overhead is the fact that every single memory access has to be analyzed by the add-on, because the

instrumentation API does not allow the targeted interception of a small sub set of memory accesses.

Table 4-1. Tracing requirements: Bochs

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 40

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

Table 4.1 summarizes the advantages and disadvantages of Bochs. Thanks to full system emulation and

the capability to emulate Intel VT instructions, Bochs fulfills the first two requirements: Low-level

communication can be traced and Bochs supports the emulation of all relevant hypervisors. The slow

performance in general and the missing capability of targeted memory interception means the

requirements for Performance and Configurability are not satisfied. Still, Bochs seems to be a valid choice

if the low performance can be accepted.

4.2.2 QEMU

QEMU is a fast system emulator with support for multiple architectures including x86, ARM and MIPS as

emulation targets and host platforms [4]. When emulating x64 code on a x64 host, QEMU can operate in

two modes: Software emulation using a dynamic binary translator called Tiny Code Generator (TCG) or by

using hardware-assisted virtualization with the help of the KVM [22] hypervisor.

TCG operates by dynamically translating blocks of instructions. Privileged instructions are rewritten to

safe alternatives as discussed in Section 2.3.1: Privileged instructions are translated into a number of

unprivileged ones that operate on the virtual machine state. Because this translation process happens in

software, it is possible to add arbitrary instrumentation code that gets executed whenever certain types of

instructions are executed. This can be used for memory tracing [34] or execution traces [13] and makes

QEMU in TCG mode a popular implementation target for these kind of software. A downside inherent to

TCG, is a lower speed in comparison to native or hardware-assisted virtualization. Even though, TCG is

much faster than Bochs it still adds a significant overhead. This overhead gets noticeably larger when

tracing instrumentation is added as documented in [35] and [13] While the instrumentation capabilities of

QEMU are very powerful, they adds a general overhead to each instrumented instruction. For example, an

instrumentation of memory accesses cannot simply be disabled or enabled for specific memory addresses

but will be triggered for every memory access. Of course, this overhead can be partially reduced by

keeping the added instrumentation as fast as possible, but this is not trivial.

More importantly, TCG is not suitable for the use case of this thesis due to missing support for modern

CPU features: Because of the rising prevalence of hardware virtualization, most of the current

development effort for the x64 platform is concentrating on QEMU in combination with KVM. This means

that emulation support for modern CPU features is limited in TCG. Initial experiments showed that

QEMU/TCG was not able to install a 64bit version of Windows Server 2012, required as a base system for

the Hyper-V hypervisor, and that a Xen hypervisor running as a TCG guest did crash when starting level 2

guests. These first results triggered the decision to not rely on QEMU for this thesis. However, it is

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 41

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

important to note that compatibility improvements are regularly added to TCG, making it potentially more

suitable in future versions.

Table 4-2. Tracing requirements: QEMU

Table 4.2, shows the summarized advantages and disadvantages of QEMU in TCG mode: Whole system

emulation and the possibility to add instrumentation code makes it possible to trace low level

communication. In addition, the offered performance is sufficient for the described use case. Still, missing

support for modern CPU features restricts the systems that can be emulated using TCG and the

instrumentation code is executed for each memory access adding a general overhead that can only be

partially mitigated.

4.2.3 Hardware-Assisted Virtualization

The final virtualization approach that could be used for this thesis is hardware- assisted virtualization. The

core concepts of hardware-assisted virtualization were introduced in Section 2.3: Processors supporting

Intel VT add the possibility to run virtual machines natively on the hardware in a special operation mode

called non- root mode. All unprivileged instructions execute at full speed, whereas privileged operations

trigger a VM exit, which can be handled by the hypervisor.

Because only certain privileged instructions trigger a VM exit, hardware-assisted virtualization does not

offer as much instrumentation possibilities as the previous two approaches out of the box. Still, memory

access tracing is possible using Extended Page Tables (EPT): As described in Section 2.3.3, EPT adds a

second layer used during address translation. By restricting the permissions of specific memory pages

using EPT entries, each memory access to these pages triggers an EPT violation and a VM exit. The VM exit

is handled by the hypervisor which can log it, revert the page permissions for a single instruction and

continue execution.

In comparison to the other proposed approaches, this has one important advantage: Memory interception

can be enabled and disabled dynamically on a page granularity. This means that all normal system

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 42

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

operation can execute natively and only instructions operating on traced memory regions suffer from an

overhead due to the EPT violation and corresponding VM exit. While this overhead is quite significant, it

only occurs when an application uses the shared memory region. No large passive overhead is introduced.

This EPT based approach is also suitable for a lot of diverse shared memory interfaces in different types of

software. The only requirement is the possibility to extract information about the shared memory pages

using virtual machine introspection or a software agent running inside the VM.

Table 4-3. Tracing requirements: Hardware-assisted Virtualization

Still, the use case of tracing inter-domain communication between virtual machines requires support for

nested virtualization. The idea of nested virtualization, running a hypervisor inside another one, was

presented in Section 2.3.4. Because several major hypervisors include support for nested virtualization,

hardware-assisted virtualization fulfills all our proposed requirements as shown in Table 4.3

4.2.4 Comparison

As Table 4.4 shows, memory tracing based on hardware-assisted virtualization is the only approach that

fulfills all our requirements. In particular, it allows for configurable tracing, which adds overhead only to

accesses to the traced memory accesses while not significantly slowing the rest of the system down. For

these reasons, hardware-assisted virtualization was chosen as the approach for this thesis.

Table 4-4. Tracing requirements: Comparison

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 43

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

4.3 Proposed Architecture

Figure 4.3 gives a high level overview about the proposed architecture. All involved components are

running on top of the level 0 (L0) hypervisor. The hypervisor runs two virtual machines: A privileged

management domain called dom0 and a unprivileged domain running a nested hypervisor called L1. The

L1 hypervisor is our target system. Because we want to analyze inter-domain communication, the level 1

hypervisor needs to host at least two L2 virtual machines: An unprivileged domU running frontend drivers

for paravirtualized devices and a privileged dom0 running the corresponding backend drivers. The shared

memory communication between these drivers can be seen in Figure 4.3 and is the one that needs to be

traced and analyzed by our toolkit. The L1 dom0 hosts all self-developed parts of our toolkit. The trace

collector is the core component of the proposed design. It needs to interact with the virtual machine

introspection (VMI) library to extract information about shared memory ranges from the L1 hypervisor and

to enable and disable memory intercepts using EPT permissions of the L0 hypervisor.

Figure 4-3. Proposed architecture

When an EPT violation is triggered, the trace collector is notified. It extracts all needed access information

and stores them into the trace storage. After tracing is finished, the analysis client can operate on the

storage to identify potential malicious traces. In theory, the analysis client does not require access to the

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 44

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

VMI component, allowing for a complete offline analysis when the trace stores all needed information.

Intercepted EPT violations are completely hidden from the L1 hypervisor. The virtual machine is paused

while a memory access is traced. Due to the low overhead of hardware-assisted virtualization, even for

nested environments, all operations that do not involve the traced memory regions can operate at almost

native speed. However, traced memory accesses are very expensive in comparison because they will

trigger a complete VM exit and multiple context switches. This means the presented architecture is only

feasible when the percentage of shared memory accesses is a small part of the overall system activity. Of

course, this is the case for inter-domain communication but it makes this approach less fit for tracing all

memory accesses of a single process or even of the whole system.

An important detail of the architecture is the fact that the level 1 hypervisor only has a single (virtual) CPU.

This might seem surprising due to the fact that Section 2.2 considers multiple cores as a requirement for

reliable double fetch exploitation. However, simply identifying these vulnerabilities does not require a

multi core system and by restricting the analysis target to a single core the implementation effort is

significantly reduced. Otherwise, EPT permissions and access tracing would need to be managed on a per

CPU basis while keeping the possibility of rescheduling to different CPU cores in mind.

In the following sections, the requirements for the different involved components will be discussed in

more detail.

4.3.1 Hypervisor

For reasons described in Section 4.2, we choose to implement our toolkit on top of an Intel VT based

hypervisor. As discussed in the last section, the hypervisor needs to be able to virtualize a second

hypervisor, a concept called nested virtualization, as described in Section 2.3.4. Nested virtualization is not

in widespread production use and is not supported by all major hypervisors.

The ability to run the L1 hypervisor is not sufficient for our use case, the proposed design requires at least

two hypervisor APIs usable by the VMI library: Read access to the memory space and CPU state of the L1

hypervisor, and a way to manipulate its EPT permissions. Furthermore, EPT violations triggered by our

modifications should be passed to VMI layer so they can be analyzed and logged by the trace collector.

When these APIs are available, no direct modifications to the hypervisor are required. This indicates that

even a proprietary hypervisor might be usable in the proposed architecture, as long as nested

virtualization is supported and sufficient APIs are available.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 45

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

4.3.2 Virtual Machine Introspection

The concept of VMI was introduced in Section 2.4. When looking at the requirements of the proposed

analysis algorithms and the overall architecture, the requirements for the used VMI library are quite

limited:

 Memory Access. Read access to the VM memory is required to extract information about the

memory pages used for inter-domain communication. Depending on the exact architecture of the

target system, the easiest way to find this data might differ but it generally involves identifying

and traversing data structures kept in the memory space of the L1 hypervisor or the involved L2

guests. Furthermore, our proposed algorithms profit from access to the instruction bytes

because it allows better insight into which operation triggered the EPT violation. While non the

proposed algorithms require memory access traces that include the written content, such a

feature would also be implemented ontop of this functionality when needed.

 CPU State. Read access to the CPU state at the point of the EPT violation. Most

 relevant is the address of the page table hierarchy base address, which specifies the used page

tables, and the current instruction pointer that will point to the instruction accessing the shared

memory pages.

 Address Translation. As documented in Section 2.3.3, EPT violations are based on guest physical

addresses. This means that translation between virtual addresses and physical addresses needs

to be performed during trace collection and initialization.

 Breakpoints. Breaking on target specific management functions allows an efficient handling of

newly added or removed shared memory pages. While, breakpoints can be implemented directly

using EPT permissions, direct support by the VMI library is preferable.



 All other required features can be implemented on top of these features and the aforementioned

hypervisor API for manipulating EPT permissions and handling violations. For example, the

memory access size, which is needed by the proposed double fetch algorithm, can be extracted

out of the disassembled instruction bytes. On the other hand, the name or id of the domain

responsible for the memory access can be learned by extracting it out of hypervisor specific data

structures stored in memory. While a standalone hypervisor API for manipulation of EPT

permissions would be sufficient, a VMI library that already includes EPT events is more

convenient because it reduces the coupling to a certain hypervisor version and simplifies the

implementation effort.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 46

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

4.3.3 Trace Collector

The trace collector is the core component of the proposed architecture. It is running as a standard user

space process in the management domain of the L0 hypervisor. The collector uses the VMI library to

extract information about the shared memory pages out of the L1 hypervisor guests and subsequently

removes read and write permissions from these pages using the VMI library or a direct API offered by the

hypervisor. When an EPT violation is triggered, the trace collector is responsible for extracting all required

state information out of the target VM and storing this data in the trace storage. While the trace collection

functionality could be completely implemented in the hypervisor itself, but this would increase the

implementation effort significantly because bugs would directly lead to a crash of the L0 hypervisor. In

addition, user space libraries cannot be directly used from the hypervisor context. By using an API from

the privileged dom0, all needed functionality can instead be implemented as standard user space utilities.

The trace collector is designed to be as general as possible. The only target specific component that is

required by the trace collector is the code that is responsible for identifying the physical addresses of

shared memory pages. As we will discuss in the next chapter, the difficulty of this step differs strongly

depending on the target architecture. A related functionality is the detection algorithm to decide if a

memory access was performed by the privileged level 2 domain or by the unprivileged one. Because only

vulnerabilities in the backend driver are a relevant security risk, only memory accesses performed by the

backend should be analyzed. This means that some mechanism needs to identify which level 2 VM

performed a memory access by analyzing the state of the virtual CPU at the time of the EPT violation.

Because most VMI libraries were not developed with the use case of nested virtualization in mind and

hypervisors don’t expose the state of the simulated VT environment as an API, this is not trivial and

requires target specific code. The information which domain performed a memory access, can either be

stored inside the memory trace or all memory accesses by unprivileged domains are simply dropped.

The final task of the trace collector is the relaunch of the instruction that triggered the EPT violation.

Simply restarting it without relaxing the EPT permissions would result in an endless loop of violations, so

single stepping can be used to enable access to the memory address for only a single instruction. This

ensures no accesses are missed.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 47

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

4.3.4 Trace Storage

In Bochspwn [20] all traced accesses are stored in a text file for later analysis. However, the authors note

that this simple manner requires large amount of disk space and is limited by the IO performance of the

disk backend. In order to minimize the additional overhead introduced by storage, a partially memory

backed storage seems preferable. Additional actions like compression and persistent storage should be

performed independently and in a different thread than the actual trace entry, so the trace collector can

resume the virtual machine as fast as possible, without waiting for these post processing steps to finish.

The tracing storage is the only component to be used by the analysis algorithms. This means it has to store

all data required by the algorithms and it should offer a easy to consume library to iterate through trace

entries. Furthermore, support to store different data types should be available. In addition to normal trace

entries, information about the responsible instruction has to be stored. Storing this information inside the

actual trace entries is not optimal, because a single instruction potentially triggers a large number of

memory access making this approach inefficient.

An advantage of the proposed architecture is the low coupling of the different components. In particular,

the analysis clients only operate with the tracing storage making them completely independent from the

trace collector and the VMI interface.

As long as the trace storage offers a standardized API, other methods for memory access tracing can be

used with the analysis clients.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 48

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

4.4 Walkthrough

 This section describes an exemplary tracing session with the proposed design, starting with the initial

page table parsing over the interception of EPT violations to the final analysis.

1. The target L1 hypervisor is started, which in turn starts execution of the L2 management domain

(dom0). The L2 domU is still stopped and no inter-domain communication can occur.

2. The trace collector is started and uses the VMI interface to identify memory pages that are shared

between the L2 dom0 and other partitions. Because no guest domains are running this will not

return any results. The trace collector sets breakpoints in the target hypervisor to get notified

when new shared pages are configured.

3. The L2 domU is started. When the operating system boots, para-virtualized devices are initialized.

This triggers initial handshakes between domU and dom0 and the configuration of shared

memory pages.

4. The breakpoints registered in step 2 are triggered and the trace collector extracts the (L1)

physical addresses of the shared pages. It removes read and write access from these pages to

trigger an EPT violation whenever they are used.

5. System activity in the L2 domU triggers the use of the para-virtualized device. Depending on the

device type this might happen automatically or manually, for example by triggering a network

connection.

6. The frontend driver in domU and the backend driver in dom0 try to exchange data via shared

memory. When the virtual CPU tries to access one of the memory pages an EPT violation is raised

and control is transferred to the L0 hypervisor. The L1 hypervisor and all its virtual machines are

stopped.

7. The L0 hypervisor notifies the trace collector of the EPT violation. The trace collector uses the

VMI library to extract all required information out of the paused VM and stores a trace entry in the

tracing storage.

8. By relaxing the EPT permissions, single-stepping over the triggering instruction and removing

the permission again, the trace collector makes sure the target system is not triggering the same

EPT violation over and over again. Instead execution can continue normally with the next

instruction until the next memory access occurs.

9. Steps 5. till 8. repeat until the target system shuts down or the trace collector is closed manually.

Step 4 is triggered whenever a new shared memory page is configured.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 49

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

10. In the final step an analysis algorithm is started to iterate over the trace storage. The output can

be used for manual analysis or as an input into other tools.

An important advantage of this design is that step 10 can be executed at any time after tracing was

finished. As long as the trace storage is not deleted, improvements in the analysis algorithms can be

directly tested on already collected data.

4.5 Limitations

There are several limitations that need to be kept in mind when comparing the presented approach to

different designs and when evaluating the discovered potential vulnerabilities. These limitations and their

impact on the analysis results are discussed in the following.

 Tracing overhead. Every access to a monitored memory region triggers at least 2 VM exits, page

table modifications, and multiple context switches. The overhead for active tracing is therefore

quite large. However, in comparison to regular system activity, inter-domain communication

occurs only rarely. Due to that, a high overhead for active tracing is preferable in contrast to a

lower permanent overhead introduced by other approaches like software emulation. This makes

sense for the presented use case, but might not be the right choice for analyzing shared memory

interfaces with a high number of accesses. For example, analyzing kernel-user space

communication can be ruled out due to the extremely high number of memory pages involved and

the fast rate of context switches.

 Single core virtualization. Introducing support for more than one core in the target system would

significantly increase the implementation effort as high- lighted in Section 4.3. In theory, this can

lead to problems when vulnerable code is only executed on multi core systems. For example, a

frontend driver could optimize for the number of available cores by choosing a different

communication method. Still, we consider the risk for missing vulnerabilities due to this behavior

to be acceptable in comparison to the greater implementation effort needed for supporting

multiple cores.

 Target coverage. Dynamic analysis in general is limited to the code that is actually executed by

the target system. If a certain functionality is not used during tracing, no vulnerabilities in it will

be discovered. Code coverage can be improved by triggering as much system activity as possible

during tracing. However, this is not a bullet proof approach, because some code might only be

triggered in special configurations or under unlikely circumstances

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 50

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

 Reliance on nested virtualization support. The proposed design relies on work- ing support for

nested virtualization. None of the presented hypervisors considers this feature production ready,

and bugs and instabilities have to be excepted. While this might have an negative impact on the

results of this thesis, better support for nested virtualization will reduce the impact of this

limitation in the near future.

4.6 Conclusion

The design of our memory access tracing toolkit is built on top of hardware-assisted virtualization and the

use of Intel EPT to dynamically modify page table permissions. By running a target hypervisor as a nested

virtual machine and removing access permissions from memory pages used for inter-domain

communication, all accesses to these pages can be logged. We use virtual machine introspection library to

access VM memory, identify the shared pages and to extract the state of the virtual CPU whenever a

memory access is detected. In order to keep the active overhead as low as possible and to allow offline

analysis, collected traces are stored in a dedicated trace storage. The two proposed analysis algorithms

operate directly on this storage, leading to a largely decoupled architecture that allows for the

replacement of most components.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 51

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

5. Implementation

In this chapter the implementation of the architecture proposed in Chapter 4 is presented. The Xen [3]

hypervisor was chosen as the hosting hypervisor using the libvmi [33] library as the interface between

hypervisor and trace collector. The Simutrace [34] tracing framework is used as a trace storage, which

only required the trace collector and analysis algorithms to be developed from scratch. All used third party

components offer a C API, giving us as wide range of possibilities for our implementation language. Due to

the ease of integration and high performance requirements C++ was chosen as implementation language.

Thanks to the decoupled design, large parts of the implementation are completely target independent. As

discussed in Section 4.3.3, only the trace collector requires target specific code. For this thesis, support

for three hypervisors was implemented: Xen, Hyper-V and KVM, with Xen having the most mature

implementation. In all cases, the inter-domain communication mechanisms used by paravirtualized

devices, which were highlighted in depth in Section 2.5, were targeted. The following section concentrate

on the code paths that are target independent, the target specific functionality is documented separately at

the end of the chapter.

5.1 Components

The proposed design was split into five main components. Three of those could be implemented by using

off-the-shelf components: (a) The L0 hypervisor responsible for hosting the management domain, the

target system and offering APIs for introspection and EPT manipulation. (b) The VMI library that sits

between the trace collector and hypervisor and (c) the trace storage for persistent and efficient storage of

memory traces.

5.1.1 Hypervisor

The Xen hypervisor was chosen as L0 hypervisor for our implementation. For an introduction to the

general architecture of the Xen hypervisor see Section 2.5.1. Xen is one of the two mainstream open

source hypervisors (the other one being KVM). While being open-source is not a requirement in itself, none

of the available commercial hypervisors offers an API that fulfills the requirements detailed in Section

4.3.1. In comparison to KVM, Xen offers a more feature rich API out of the box, including support for EPT

based memory interception using the memaccess API. All APIs can be used from user space applications

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 52

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

running in the management domain dom0 removing the need to perform direct modifications to hypervisor

code.

Nested virtualization is considered to be a tech preview feature not suitable for production use but

supported for most configurations. The official Xen wiki[30] lists Xen itself, KVM, Vmware and Hyper-V as

working targets for nested virtualization. While we were not able to replicate all of these results during

implementation, the main evaluation requirement of running Xen on Xen is well supported.

Most of the development was performed on Xen version 4.5, the current stable version at the time of

writing. However, API calls to Xen are wrapped using the libvmi library for introspection, which offers a

stable API, supporting all recent Xen versions and hides Xen API changes from our toolkit. In addition, the

libvmi interface is less complex than the direct Xen API, reducing the implementation effort even further.

5.1.2 Virtual Machine Introspection

libvmi is a open source C library for virtual machine introspection (VMI)[33]. It offers a mostly hypervisor

independent API to read and write memory of a virtual machine, intercept hardware events and accessing

the virtual CPU state. In addition, utility functions that provide easy access to semantic information, such

as the list of running processes or a map from CR3 registers to process IDs, are available for Linux and

Windows guest systems. libvmi supports the Xen and KVM hypervisors and can also operate on physical

memory dumps.

Listing 3. Using libvmi to extract a pointer out of VM memory

Listing 3 shows an example of using the libvmi API to extract an 8byte pointer value out of the VM memory:

The read_ptr function first translates the virtual address val into a physical address using the

vmi_pagetable_lookup function and the address of the used page table structure dtb. The vmi_read_64_pa

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 53

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

function is then used to extract the bytes out of the VM memory and store them in the returned variable

value. The interesting aspect of this code is that it is entirely implemented in standard user-space C++

code and works with all hypervisors that are supported by libvmi. This is more preferable than the

potential alternative of adding code to the hypervisor itself or interacting with a number of potentially

unstable APIs.

The most useful feature of libvmi is its support for Xen’s memaccess API. This feature is part of a more

general functionality offered by libvmi, its event API. This API can be used to trap on certain register

writes, as well as on memory accesses. While trapping on registers is limited to those where a write

access triggers an VM exit, memory traps use the Xen memaccess API, which itself is based on EPT

permissions.

5.1.3 Trace Storage

Simutrace [34] is used for the storage and retrieval of memory access traces. It is based on a client server

architecture that allows for fast and asynchronous writing of trace entries. The client component, which is

running as part of the trace collector communicates with the server component using shared memory. The

server is responsible for compression and storage of the collected data, reducing the work that needs to

be performed by the trace collector.

Simutrace was designed for ease-of-use and has a simple C API that can be easily integrated into both the

trace collector and analysis clients. In particular, reading and writing of trace entries uses an almost

identical API. A core concept of Simutrace are streams. Each stream consists of a number of ordered

entries of a single type and streams can be created by the client whenever required. The separation of

semantically different trace entries into streams, allows for a number of useful optimizations [34]:

Because all entries in a single stream have the same size, unique entries can be directly addressed by

offset. Additionally, custom compressions methods optimized for specific trace types can be implemented.

This feature helps our implementation to reduce the space requirements of long running traces.

5.2 Trace Collector

The trace collector is responsible for the identification of shared memory pages, the tracing of memory

accesses and the subsequent data extraction and communication with the trace storage. It uses libvmi to

communicate with the hypervisor and stores the traces using Simutrace.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 54

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

5.2.1 Identification of Shared Memory Pages

The first task of the trace collector is the identification of shared memory pages used for inter-domain

communication. This task could be done completely target independent by walking through the extended

page tables of the target system and searching for physical pages that are mapped by different guests.

However, this approach is hard to implement correctly and very error prone. For example, as discussed in

Section 2.5.3, the KVM hypervisor maps the whole memory of each 5.2.2 of its guest into the address space

of the corresponding QEMU process. Simply iterating over the page tables would indicate that all pages of

the guest are shared with the host system. Of course, almost none of these pages are ever used for shared

memory communication making the general approach unsuitable in the case of KVM. Furthermore,

without target specific code all updates to the EPT tables managed by the L1 hypervisor need to be

intercepted to make sure they do not create a new shared memory mapping. This would create an large

overhead, not acceptable for our use case. For these reasons, our implementation requires target specific

code to identify the set shared pages and to intercept all updates to this set.

Regardless of the target hypervisor, the result of this step is an updated set of guest physical pages of the

L1 hypervisor memory. Every one of these pages is shared between two virtual machines, which for our

case normally means it is shared between the management domain and an unprivileged guest. It is

important to note, that these characteristics are not important for the rest of the trace collector

implementation. As long as the page set is valid and updated regularly, tracing could also be performed on

a page that is shared between two user space processes or used for kernel communication.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 55

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

5.2.2 Tracing of Memory Accesses

Listing 4. Creating a memory event in libvmi

The tracing of memory accesses is implemented on top of the event API offered by libvmi. Listing 4

demonstrates how this API can be used to intercept accesses to VM memory. The event variable specifies

the details about the registered event. This includes the physical memory address that should be trapped,

whether the whole page or only the exact address should trigger an interception and which types of access

should be handled. The callback function will be called whenever the event is triggered. After event is

initialized, it is registered using the vmi_register_event function.

Even though the libvmi API hides a lot of the underlying complexity from the developer, the underlying

implementation uses the EPT based approach outlined in the last chapter. The vmi_register_event call

triggers the use of Xen’s memaccess API to modify the EPT permissions of the physical page

corresponding to paddr. When an EPT violation on this page is triggered, Xen notifies libvmi, which passes

execution to the specified callback function. The generation and storing of a trace entry is then performed

inside this callback function.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 56

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

Figure 5-1. Decision tree for the callback handler function.

The trace collector uses this API by registering a memory event that triggers on read and write accesses

for every shared memory page. All these events call back to the xen_trace_event function when triggered.

Listing 5.1 shows the layout of this callback function. When the callback is executed, the target VM is

paused. This makes it possible to access the complete state of the virtual machine, which is used to

extract the id of the currently active L2 guest. By knowing the domain id, the code can distinguish between

memory accesses performed by the privileged backend and the ones done by the frontend running in an

unprivileged domain. When the unprivileged domain performs the memory access, no further data

extraction is performed. Instead, a fake trace entry with all fields set to zero is generated. These fake

entries can be later used by the analysis algorithms to detect context switches between unprivileged and

privileged domains.

If the privileged domain did perform the memory access, the trace collector needs to collect all

information used by the analysis algorithms. The accessed physical memory address and the type of

memory access is communicated by the triggered EPT violation and automatically provided to the callback

function. In addition, the virtual RIP and CR3 register values are extracted using libvmi. Using these

information, the bytes of the accessing instruction can be fetched from VM memory. As discussed in

Section 4.1.2, it is important to store the size of a memory access to perform a precise double fetch

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 57

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

analysis. This information is not included in an EPT violation and needs to be extracted out of the

instruction properties. To do this, the Capstone [7] disassembly library is used. Capstone is a multi-

architecture disassembly library with a powerful and easy to use C API. By using Capstone to disassemble

the instruction, its operand sizes and therefore the size of the memory access can be learned easily.

Fetching and disassembling instruction is relatively expensive in comparison to the other performed

actions. Initial evaluation showed that almost all memory accesses are performed by only a small set of

instructions, with an even smaller subset of instructions accessing shared memory hundreds of times

during even short traces. To reduce the overhead of superfluous fetching and disassembling, a caching

layer was introduced. In addition, the instruction bytes itself are not stored directly in the trace entries but

are instead stored in a specialized instruction stream, which only uses a single entry for each unique

instruction.

After all necessary data is fetched from the caching layer or the instruction itself, a trace entry is created,

which is then written to a dedicated tracing stream provided by Simutrace. If the callback function would

simply return after this, without modifying the EPT permissions, the target VM would be stuck in an

endless loop triggering an EPT violation over and over again. Instead, the EPT permissions responsible for

the violation are relaxed temporarily and a single step is triggered in the target VM. After this, EPT

permissions are restricted again. This approach ensures that no memory accesses are missed.

5.2.3 Trace Entries

As discussed in the last section, the presented implementation uses two separate Simutrace streams to

store memory access traces and instruction data. The first stream is responsible for storing the actual

memory access trace. To do this, it uses the data type visualized in Figure 5.2, which is provided by

Simutrace. By using this pre-defined data type, SimuTrace is able to use an optimized compression

algorithm specialized on memory traces. This leads to an improvement in the compression ratio and

reduced space requirements during long tracing sessions, as well as a faster compression speed. The

following data fields are stored in the trace:

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 58

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

Figure 5-2. Layout of a memory trace entry.

 Cycle count. A 48 bit steadily increasing time value. This can be used to correlate events stored in

different streams, but this is currently not required by the implementation. Therefore, the trace

collector just stores an incrementing value in this field.

 Full size flag. A 1-bit flag to indicate whether the memory access size is 64bit. This is required for

correct parsing of the combined data/size field at the end of the entry.

 Tag. A 15-bit value for storing arbitrary data which is not interpreted by Simutrace. The trace

collector uses this field to store whether a memory access was a read or write.

 Instruction pointer. The address of the instruction that performed the memory access.

 Memory Address. The accessed virtual memory address.

 Data and Size. Simutrace uses a single 64bit field for storing the access size as well

as optional memory contents. A 64bit access can be indicated by using the full size flag. Smaller

accesses use the last 32bits of the field to encode the access size and the first 32bits to store the

data content.

Because the implemented analysis algorithms do not require access to memory contents, the trace

collector simply zeroes the data field of every trace entry. While this makes the entry type more complex

than needed, it allows the simple addition of memory content when required. If a new analysis algorithm

would require access to the memory content, all existing algorithms could still be used without being

rewritten to support a new format. Furthermore, compression makes the storage cost of the addition field

negligible. In addition to this memory access stream, a second stream is used to store semantic

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 59

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

information about the instructions that triggered a memory access. Because a single instruction can be

executed hundreds of times during a single tracing session, there

is no one to one mapping between instructions and memory accesses. This means storing the instruction

data inside the previously discussed entry type would be extremely inefficient. This second stream stores

entries of the format shown in Figure 5.3. Besides including the virtual RIP and CR3 registers, the raw

instruction bytes are stored. In addition, the human readable name of the kernel driver containing the

instruction, and the instruction offset relative to the driver start address is added when possible. This data

is later used by the analysis algorithms to ease manual analysis.

Figure 5-3. Layout of an instruction trace entry.

Even though the described usage of Simutrace is quite simple, it is sufficient for our normal use case of

tracing the communications between two virtual machines. In theory, dedicated streams could be used for

different shared memory pages or paravirtualized devices. However, this added complexity does not have

any clear benefits as long as the size of the main stream does not get too large. On the other hand, adding

more streams to store more semantic information might be necessary when implementing additional

analysis algorithms. Due to the design of Simutrace this is easily possible, without breaking backwards

compatibility.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 60

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

5.2.4 Attaching & Detaching

An optional feature that proved to be very useful during normal usage is the ability to attach and detach the

trace collector at arbitrary times. This allows to only trace memory access during a certain time frame and

to update the trace collector without restarting the target virtual machine. Having the ability to safely

detach the trace collector is also a useful feature to handle exceptions: A goal of the collector

implementation was to not crash the target hypervisor because of premature exits of the trace collector.

To enable this, one important assumption must always hold: All registered memory events need to be

deregistered, before the trace collector process exits. Otherwise, a memory access to one of the traced

memory pages will trigger a hypervisor intercept, which however is not able to pass the event further to

the trace collector, leading to a hang of the target system. To ensure correct behavior, the trace collector

always keeps a list of all currently active memory events in a global state object. The destructor of this

object is responsible for deregistering all active events. Enabling interactive attaching and detaching only

requires capturing user invoked signals send to the process using the sigaction function and letting them

trigger a controlled exit. This will automatically call the state destructor, letting the target virtual machine

run unrestricted.

5.3 Analysis Algorithms

As previously discussed in Section 4.1, two algorithms were implemented for this thesis: Attack surface

and double fetch analysis. Both algorithms only communicate with Simutrace, allowing for full offline

analysis even if the target system is not running anymore. This also means that the algorithms are

independent of the exact implementation of the trace collector. Switching from an EPT based trace

collector to a different approach based on software emulation would not require a rewrite of the analysis

components, as long as the same data is collected.

Both implemented analysis algorithms were developed as standalone C++11 tools. They have no external

dependencies besides the Simutrace library and communicate with Simutrace using a small wrapper

around the default API. The wrapper provides a type-safe lambda based interface to iterate over streams

and entries while not performing any superfluous copies.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 61

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

5.3.1 Attack Surface

The attack surface algorithm is very simple. We consider every function in a backend driver that performs

a read access to a shared memory region to be part of the attack surface. This is because all code that

operates on attacker controlled data can have vulnerabilities and should be analyzed further.

To identify all instructions working on shared memory, the algorithm iterates of the memory access

stream until it finds a read access. Using the stored RIP instruction pointer, the corresponding instruction

is fetched out of the instruction_entry stream and stored in the result set. This process continues until the

whole stream is enumerated.

The analysis tool supports two output modes: The first mode lists all discovered instructions in a human

readable output format. The second mode outputs in a machine readable format that can be easily

imported into other tools. A proof-of- concept script was developed to import this output into a database

file used by the IDA[17] disassembler, allowing for efficient manual analysis of closed source backend

components.

5.3.2 Double Fetches

The main analysis algorithm implemented for this thesis identifies double fetch vulnerabilities by

searching for potentially vulnerable access patterns. An overview about the design of this analysis was

already given in Section 4.1.2. Double fetches can be discovered by finding multiple fetches from an

address in a privileged single execution context. Context switches, meaning a switch between the

privileged and unprivileged domain, are detected by looking for memory access performed by the

unprivileged domain. As described in the last section, when the trace collector sees a memory access by

the unprivileged domain an empty trace entry will be submitted. The double fetch algorithm uses these

artificial events to split the memory trace into chunks that correspond to a single execution context. The

algorithm can be further configured in two ways:

 Overlapping memory accesses. Depending on a configuration flag, the algorithm identifies only

multiple accesses to a memory address with an identical start address, or also considers

overlapping accesses with potentially different sizes to be a sign for a double fetch vulnerability.

Disallowing overlapping memory accesses can be used to reduce the number of false positives,

while at the same time increasing the chance to miss a potential vulnerability. Only considering

accesses with the same start address reduces the noise level, because copy operations that

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 62

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

operate on blocks of data are filtered in most cases. Of course, this setting raises the risk of false

negatives.

 Interweaved read and writes. Until now, our discussion of double fetch issues mostly ignored the

handling of privileged writes to the same address. Inter- weaved reads and writes of a memory

access often indicate a synchronization primitive or a reuse of a memory area. There are two

ways they can be handled: Either they are ignored completely, or they reset the access count

back to zero. A reason for the second behavior is the fact that synchronization primitives, such as

mutexes, will be repeatedly read and written and might make the analysis algorithm output more

noisy. On the other hand, an application could mistakenly use the shared memory region as

temporary storage and removing these accesses from the output can therefore lead to false

negatives.

Figure 5.4 shows the code flow of the double fetch analysis in its most conservative setting: Interweaved

reads and writes are forbidden and only accesses with the same starting address are considered as

potential double fetches. The algorithm stores the set of instruction pointers, that accessed a certain

address, in a hash map which is initialized to be empty. The code iterates over every trace entry and

checks whether it is an empty entry generated by an unprivileged memory access. Privileged accesses are

divided into reads and writes. A read triggers the addition of its instruction pointer to the map entry of the

accessed address. A write clears the map entry of the address, as long as interweaved writes are

forbidden. Otherwise, it is just ignored.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 63

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

Figure 5-4. Conservative double fetch analysis. Interweaved reads and writes and overlapping memory
accesses are ignored.

Unprivileged accesses indicate that a context switch occurred and trigger analysis of the hash map: Every

map entry that consists of more than a single instruction pointer, is added to the list of double fetch

candidates. After that the map is cleared again and the analysis continues with the next entry. When the

stream ends, the map is analyzed a last time and the list of double fetch candidates is returned.

Before printing this list to the user, entries that occur multiple times are removed. In order to not miss

potential interesting variants involving three or more memory accesses, only entries that contain identical

set of instruction pointers are considered identical. The discussed configuration settings have a large

impact on the number of double fetches discovered, as well as their security relevance. Chapter 6

evaluates the effect of these settings against real world targets.

5.4 Target Specific Code

As discussed in Section 5.2 our implementation requires target specific code in three

places:

 Identification of shared pages. In order to trace memory access to shared mem- ory pages, these

pages need to be discovered first. This step normally requires parsing and traversing of

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 64

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

hypervisor data structures and is only feasible if such a global data structure exists. The

advantage of finding all shared memory pages at a certain point in time is better support for

attaching and detaching of the trace collector. If this approach is not feasible, interception of

shared page creation as discussed below can also work without this mechanism.

 Interception of shared page updates. Even if the feature to identify all shared pages is

implemented, doing so for every context switch would incur an unacceptable performance

overhead. Instead, updates to the set of shared pages, meaning their creation and destruction

should be intercepted. This makes it possible to keep a current set of shared pages without

performing unnecessary work. If shared pages are not stored globally, this mechanism can also

be used as a partial replacement. All pages that are created while the trace collector is attached

can be extracted and traced correctly. Of course, this has the down side that shared pages might

be missed if the trace collector does not attach to a target system immediately during startup.

 Domain identification. The trace collector requires the ability to differentiate be- tween privileged

and unprivileged memory accesses. This can be done by identifying the currently active domain in

the EPT violation handler. For L2 guests that are virtualized using hardware-assisted

virtualization, this information can be extracted by analyzing the currently active VMCS (see 2.3.1).

Unfortunately, Xen and libvmi do not provide an easy way to access this data for nested

hypervisors. This requires the use of target specific code.

Interestingly, the first two mechanisms have no explicit relationship to inter-domain communication. The

same functionality could also be implemented for two user space processes performing shared memory

IPC or for user space to kernel communication. The same holds true for the concept of domain

identification, which is only used as a mechanism to distinguish between privileged and unprivileged

memory accesses. Instead of identifying the domain responsible for the memory access and deciding the

handling of the access based on its privileges, the same could be done with process privileges.

Still, the focus of this thesis lies on inter-domain communication, and the following three targets were

chosen as evaluation targets: Xen, KVM and Hyper-V. For reasons discussed in the next section, the Xen

implementation is by far the most mature one and is the core focus of our evaluation. However, the

outlined approaches for the two other hypervisor architectures demonstrate that our general design is not

target specific and can be used to search vulnerabilities in different target software.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 65

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

5.4.1 Xen

5.4.1.1 Identification of shared pages

Xen’s primary mechanism for inter-domain shared memory communication are grant tables, introduced in

Section 2.5.1. By using a special hypercall named grant_table_op, domains can share their own memory

pages with other domains. With this knowledge, the code to extract shared pages and to get notified of

possible page changes is quite simple: In the first step, a list of all active domains running in the target

hypervisor is extracted by traversing through a global Xen data structure named domain_list. For each of

these domains, the location of the grant_table is read and all grant entries are processed. While the exact

structure of a grant entry is quite complex, the only relevant attribute for our implementation is the guest

physical frame number.

5.4.1.2 Interception of shared page updates

The described mechanism alone is sufficient for finding all shared memory pages at a certain point in

time. However, additional grant entries can be created on demand by paravirtualized drivers. In order to

get notified of changes to the grant tables, we use libvmi to create a breakpoint at the end of the

grant_table_op hypercall handler. By breaking at the end, the new grant entries are already inserted into

the grant table and can be extracted as described before.

Due to the strict separation of memory spaces in the Xen architecture, all shared memory spaces need to

be implemented using the grant table functionality. This en- sures that the described approach does not

miss any shared pages that are established using other means.

5.4.1.3 Domain Identification

The aforementioned steps work regardless of the virtualization type used for the L2 guest, because both

paravirtualized guests and guests using hardware-assisted virtualization rely on grant tables. In contrast

the implemented approach for identifying the currently active domain is specific to paravirtualized guests.

This is valid, because the management domain dom0 is always paravirtualized and we can freely choose

the virtualization type for the unprivileged guest. Furthermore, several paravirtualized device frontend do

not support hardware-assisted virtualization based guests. This makes paravirtualization the logical

choice for the domU.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 66

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

Paravirtualized guests share their address space with the hypervisor, which is globally mapped at the high

end of the address space. Every virtual CPU has its own hypervisor stack specified in the MSR register

SYSENTER_ESP. At the bottom of the stack, a cpu_info structure is stored that contains a pointer called

current_vcpu that points to another management structure describing the state of the virtual CPU. This

structure has a pointer to the domain that is currently active in the domain field, which in turn contains the

domain id. Listing 5 shows how the trace collector extracts this data by reading the SYSENTER_ESP and

CR3 registers. After this the described data structures are traversed by repeatedly fetching the memory of

the target system.

Listing 5. Identification of the currently active Xen domain using management data structures stored by
the hypervisor.

5.4.2 KVM

As described in Section 2.5.3, the complete address space of a KVM guest is mapped into its corresponding

QEMU process. This means that in theory every guest page can be considered shared. In practice, only a

small subset of these pages is accessed by the management domain during the lifetime of the VM and

tracing accesses to all pages would introduce an extreme performance overhead. Instead a potential trace

collector implementation has to rely on trapping on the creation and destruction of virtqueue data

structures which are used by virtio drivers. This can be done by intercepting calls to the QEMU virtqueue

initialization and destruction functions, and parsing the past arguments.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 67

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

Differentiating between the KVM host and unprivileged guests is easy to do in KVM, because the KVM

hypervisor is running in the same address space as the rest of the host operating system. This means the

privileged host domain can be recognized by simply checking for a running KVM.

5.4.3 Hyper-V

As discussed in Section 2.5.2, the main mechanism used for shared memory communication in Hyper-V

are GPADLs. Mapping GPADLs into the address space of a partition requires the partition to perform a

hypercall. By intercepting this hypercall shared memory pages can be identified.

Domain identification in Hyper-V can be implemented by identifying a unique and constant physical

memory address for all domains. While this requires some manual analysis in the beginning, it allows fast

and stable differentiation between the different systems.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 68

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

6. Evaluation

In this chapter, the presented approach to discover software vulnerabilities in inter- domain

communication is evaluated against a real world target. The goals of this evaluation are threefold: (a)

Analyze and discuss the performance overhead introduced by the presented implementation. (b) Gain a

better understanding of the characteristics of inter-domain communication in Xen and most importantly

(c) dis- cover vulnerabilities in the privileged components involved in this communication.

In Section 6.1, the methodology chosen for this evaluation is presented. This is followed by a description of

the evaluation setup, including the used hardware, software versions and configuration settings in Section

6.2. Section 6.3 describes the results of our evaluation, including performance numbers, instruction

statistics and the results of our attack surface and double fetch analysis algorithms. Following this, two of

the more interesting results of our evaluation are discussed in greater depth in Sections 6.4 and 6.5,

before the chapter concludes in Section 6.6.

6.1 Methodology

The evaluation is split into two parts. In the first part, benchmarks for CPU, disk and network performance

were executed to gain a better understanding of the passive and active overhead of nested virtualization in

general and our tracing toolkit in particular. In the second, more important part, the two implemented

analysis algorithms are executed on multiple collected traces and the results are analyzed.

As discussed in the last chapters, the following hypervisors were chosen as potential target systems: Xen,

KVM and Hyper-V. Unfortunately, evaluation of KVM was heavily restricted due to instabilities of the Xen L0

hypervisor when running L2 guests virtualized by KVM. In the same vein Hyper-V did not start when

running as virtualization guest. Even though some time was spent trying to identify and patch bugs in Xen’s

nested virtualization support, this was not successful. Therefore, our evaluation was only performed

against a nested Xen hypervisor and its paravirtualized devices.

One of the inherent problems of dynamic analysis is the fact that only code that gets executed can be

analyzed for vulnerabilities. This means that as much functionality as possible needs to be used in order to

get useful results from the two analysis algorithms. While no reliable automatic way for triggering all

functionality of the frontend driver was developed, device activity was triggered manually in several ways:

Tracing was active during the boot process and shutdown process. This means all actions performed

during device initialization and destruction were traced. During runtime of the L2 domU, the functionality

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 69

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

of the device was used as varied as possible. For block devices this includes the reading, writing, creation

and deletion of files and directories, whereas a network device was used for network communication using

different protocols and traffic patterns. In addition, device configuration was queried and modified when

possible. To ensure that the performed activity lead to an acceptable code coverage, the output of the

attack surface algorithm was compared to the source code of the backend driver. These comparisons

indicated that our approach was successful in reaching a good code coverage.

All discussed performance benchmarks were executed four times with the presented results being the

averaged results of the last three runs.

6.2 Evaluation Setup

Our evaluation setup consists of a single physical system running all components of our architecture.

Table 6.1 shows the configuration of this system and the version numbers of all relevant components.

Table 6-1. Evaluation setup

In theory, the version of Xen used does not have an impact on the implementation of paravirtualized

devices. Instead the frontend and backend components are part of the virtualized guests. Still, we have

chosen to use two different Xen systems as L1 hypervisors in order to get full support for all supported

paravirtualized devices: With version 4.5 Xen removed support for its traditional management stack xend

and only supports the new xl management utility. However, several of the more exotic paravirtualized

devices such as SCSI and USB devices are only supported using the older xend based management stack.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 70

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

Table 6-2. Target systems

This means efficient testing requires at least two target systems with different L2 management domains.

Table 6.2 shows the configuration of these two target systems: The first called Xen-Ubuntu is running the

Xen hypervisor in version 4.5 using an Ubuntu 15.04 system as management domain. The second system

Xen-SLES is running Xen in version 4.4.2, which is one of the last versions with support for xend. The

management domain is running Suse Linux Enterprise Server in version 11 SP4. SLES was chosen as

management domain because of its extensive support for some of the lesser known paravirtualized device

types.

A paravirtualized guest in Xen uses a number of paravirtualized devices under normal circumstances. This

includes devices required for normal operation such as a block device representing the virtual hard drive,

a virtual network interface and a frame buffer. In addition, the following devices were explicitly added to

the target systems:

 PVUSB. Paravirtualized USB Support enables the passthrough of USB devices to a virtual

machine. Xen’s implementation is implemented in the xen-usbback (backend) and xen-usbfront

(frontend) kernel modules. To enable testing of these modules, the level 2 domU was configured

to use a USB device accessible from the L2 dom0. Support for paravirtualized USB devices was

only available on Xen-SLES.

 PVSCSI. Paravirtualized SCSI allows the direct use of a SCSI device in a virtual ma- chine. The

functionality is implemented in xen-scsiback and xen-scsifront. Only the older xend based

management stack has support for this feature making it only available in Xen-SLES.

 PCI Passthrough. Allows the use of PCI devices in a virtual machine. PCI passthrough is well

supported in both management stacks and could be tested on both Xen-Ubuntu and Xen-SLES.

 Disk Backends. Frontend support for paravirtualized block devices is implemented by the xen-

blkfront kernel module. For the backend, there are multiple options: A kernel based backend

called xen-blkback, a separate user space daemon named blktap and the xen_disk backend

included in QEMU. All of these backend devices were tested in separate tracing rounds.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 71

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

6.3 Results

This section describes the results of the performed evaluation. In the first part the performance

characteristics of our approach are evaluated by comparing the results of two benchmarks testing CPU

and paravirtualized device performance. After this, several data points concerning the characteristics of

inter-domain communication in Xen are highlighted. This includes the number of memory accesses

performed during our traces, as well as statistics about the types of instructions that operate on the

shared memory regions. The section continues with an analysis of the output of the attack surface

algorithm, describing the different components that can be potentially targeted by an attacker. Finally, the

results of the double fetch analysis algorithm are presented and the discovered vulnerabilities are

discussed.

6.3.1 Performance

Two benchmarks were performed to assess the overhead introduced by our implementation: CPU and

memory performance was measured using the sysbench benchmark utility. The assumption for this

benchmark was that a small overhead is introduced by nested virtualization, but no significant additional

overhead should be added when active tracing is performed. The reason is that the benchmark does not

directly interact with shared memory pages, so any additional slowdown is triggered by background

activity of the paravirtualized devices. In addition, the write performance to a paravirtualized device was

evaluated by using dd to write a 1GB file to a virtual hard drive. Because every data transfer is passed

through shared memory, a very large overhead introduced by active tracing was expected. All of the tests

were performed on Xen-Ubuntu running the previously discussed configuration.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 72

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

6.3.1.1 CPU/Memory

Figure 6-1. Sysbench CPU and memory benchmarks. Average runtime in seconds.

Figure 6.1 shows the results of the two performed sysbench benchmarks. In both cases, native

performance was compared to a system running under nested virtualization without active tracing, as well

as a nested guest whose inter-domain communication was actively traced. The prime calculation

benchmark was performed using sysbench –num-threads=1 –test=cpu –cpu-max-prime=25000 run, which

involves the repeated calculation of all primes till 25000. As expected, there is no significant overhead

introduced by nested virtualization itself or active shared memory tracing.

The memory write benchmark used sysbench –num-threads=1 –test=memory –memory-total-size=10G

run to calculate the memory performance by writing 10GB of data into memory. In this case, there is a

clear overhead introduced by nested virtualization. Still, the active tracing of shared memory

communication does not introduce additional overhead as long as the written data does not touch the

watched memory pages.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 73

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

6.3.1.2 Paravirtualized Device I/O

Figure 6-2. Paravirtualized disk benchmark. Write speed in KB/s.

Figure 6.2 shows the performance of a dd write of a 1GB file to a paravirtualized hard disk. Because the

complete 1GB file content is transferred over the traced shared memory pages, write speed crawls down

to 36 KB/s when active tracing is performed. This shows the high active overhead introduced by our

approach and its limitation in tracing heavily used memory segments.

6.3.2 Inter-domain communication characteristics

A dedicated tracing run was performed using the Xen-Ubuntu target to gain a better understanding about

general characteristics of inter-domain communication in Xen. Ten minutes of simulated system activity

was traced, which includes paravirtualized disk activity by searching through the file system, network

traffic generated using curl and ping, as well as interactive shell usage via SSH and the builtin Xen

console.

Figure 6-3. Ratio of different memory accesses to shared memory.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 74

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

During the trace, about 6.3 million memory accesses were logged. Figure 6.3 shows the ratio of the

different memory accesses. Half of the accesses were performed by the unprivileged domain, while two

thirds of the privileged memory accesses were writes. The almost exact 1:1 ratio between privileged and

unprivileged accesses makes sense when thinking about the way data is transferred over shared memory:

It is written by one side and fetched by the other. The higher ratio of privileged writes in comparison to

reads can be explained with the performed system activity. Because the performed file search and

network download are read heavy activities, the backend needs to transfer more data to the frontend than

in the other direction.

Figure 6-4. Memory access sizes (logarithmic scale).

Figure 6.4 shows the count of the different access size using a logarithmic scale. Because only privileged

memory accesses are logged with these details, unprivileged accesses are not included in this statistic.

Surprisingly, more than 77% of all memory accesses have a 8 bit size, with 22% accesses of size 32 bit and

only a few 64bit or 16bit accesses. The reason for these statistics becomes clear when looking at the most

frequently executed instructions shown in Table 6.3. Nearly all of the single bytes memory accesses, are

triggered by a single instruction in the copy_user_enhanced_fast_string function, which is a kernel helper

function to copy an ASCII string from or to user space memory. Because this function operates one byte at

a time, it triggers a high number of memory accesses when copying large strings. The second and third

most frequent instructions are both parts of the

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 75

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

Table 6-3. Most frequent instructions operating on shared memory.

xenconsoled daemon responsible for providing a virtual console. The reason for this high ranking is the

heavy use of the virtual console during the tracing run. Again the more frequent instruction is part of a

copy loop that moves data between the shared memory page and a private data structure.

Figure 6-5. Ratio of instruction opcodes accessing shared memory.

Finally, Figure 6.5 shows the ratio of the different opcodes used to access shared memory. 91% of all

unique instructions that operated on shared memory are a variant of the mov instruction with 6% being a

type of subtraction (sub) and 3% comparisons (cmp). While the high prevalence of mov instructions was

expected, the existence of sub and more importantly cmp instructions are a potential indicator for double

fetch problems: A cmp operating on shared memory, followed by a mov from the same address is a clear

indicator for a potential double fetch vulnerability.

In summary, the collected statistics validate our initial assumptions about inter- domain communication.

Both frontend and backend operate heavily on the shared memory pages, and while most of the accesses

are simple copy operations there are a number of occurrences where more complex operations are

directly executed on these shared addresses.

6.3.3 Attack Surface Analysis

The attack surface analysis algorithm was executed on two traces, collected on Xen-Ubuntu and Xen-

SLES. Xen-SLES was configured to run a L2 guest using paravirtualized USB and SCSI devices in addition

to the default configuration. The Xen-Ubuntu L2 guest had access to a paravirtualized PCI device and used

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 76

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

two separate paravirtualized hard drives, one corresponding to a raw file and the second to a block device

on the management domain. In both cases, tracing was performed over 60 minutes of active system

usage.

6.3.3.1 Xen-Ubuntu

The Xen-Ubuntu trace triggered 146 unique instructions accessing shared memory. These instructions

were part of the following components:

 xen-netback. The xen-netback kernel module is responsible for handling net- work traffic sent

and received by our virtual machine over its paravirtualized interface. Even though the backend

driver and its corresponding frontend xen-netfront communicate using a quite complex and

feature rich protocol, the xen-netback driver is actively developed and under heavy scrutiny,

making it a hard target to find vulnerabilities in.

 xen-blkback. The xen-blkback kernel module is used for accesses to the paravirtualized hard

drive that corresponds to a block device on the management domain. This is in contrast to the

paravirtualized hard drive represented by a simple file, which is handled by the QEMU process

discussed below. This difference in the responsible backend components is an interesting

example to show the use case for the attack surface algorithm: A seemingly trivial configuration

change completely replaces a security critical backend component with a different one. The xen-

blkback code is heavily integrated into the Linux block I/O layer, making in-depth source code

review quite difficult. Nevertheless, the code is not as actively developed as the xen-netback code

and is an interesting target for further analysis.

 xenconsoled. The xenconsole daemon is responsible for providing a virtualconsole to a

paravirtualized guest. The xenconsoled code base is quite small, making a full source code

review possible. Still, on the Xen-Ubuntu management domain, the daemon is running with full

root privileges and without security measures such as position-independent code (PIC). This is an

unfortunate lack of hardening for such a security critical component.

 xenstored. This daemon provides the XenStore service to all domains running on the system.

XenStore is used an storage space shared between the domains and can be described as an

inter-domain key value store [8]. xenstored shares the lack of defense in depth mechanisms like

PIC with xenconsoled but has much larger functionality. This makes it an interesting target for

further research.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 77

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

 xen-pciback. The xen-pciback kernel module provides the backend for the paravirtualized PCI

device running in the guest domain. Support for PCI passthrough is becoming more relevant due

to the support for GPU acceleration in popular cloud environments. This makes this functionality

a relevant target.

 QEMU. While the QEMU system process is mostly for providing access to emulated devices, it

also includes a backend component to the xen-blkfront frontend driver. As mentioned above, the

QEMU backend is used when the paravirtualized disk is represented by a single file in the

management domain. Due to the varying quality of QEMU’s emulated driver code, the QEMU

process is a traditional target for attacks against Xen[50, 51]. In our evaluation QEMU is running

as root on the management domain, but uses position independent code for its own executable,

making Address Space Layout Randomization (ASLR) quite effective. In addition, QEMU can be

moved into a dedicated stub domain as discussed in [8]. In comparison to the backend

components implemented in kernel space and the lesser protected xenstored and xenconsoled

processes, vulnerabilities in QEMU are generally much harder to exploit.

6.3.3.2 Xen-SLES

As expected, the tracing on Xen-SLES had large overlaps with our results for Xen- Ubuntu: Only the QEMU

disk backend and xen-pciback were not executed on this system. Instead the following three new

components were discovered:

 xen-scsiback. This kernel module is the backend for the paravirtualized SCSI device. With almost

2000 lines of code, this kernel module is one of the more complex backends and is an interesting

target for large scale enterprise environments, where the high performance offered by direct

SCSI access might be preferred to a more standard approach.

 xen-usbback. The xen-usbback kernel module offers paravirtualized USB devices to a guest

domain. In comparison to the other kernel based backend components, this module is not

included in the mainline Linux kernel. This indicates that is is only rarely used in practice and

makes it a less interesting research target.

 blktap. The blktap kernel module and user space daemon are an alternative block based backend

that is used instead of xen-blkback or QEMU for guests running on Xen-SLES. Again, this shows

that small configuration changes can have significant impact on the existing attack surface.

In summary, 9 separate privileged components working on shared memory could be identified using the

attack surface algorithm. Due to Xen’s open source nature, these components could also be identified

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 78

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

manually by reading source code and documentation. However, the same algorithm also works on

proprietary hypervisors such as Hyper-V, where a manual analysis would be much more difficult.

6.3.4 Double Fetch Vulnerabilities

The double fetch algorithm was executed on the same traces used for attack surface analysis in the last

section. This resulted in 39 potential double fetch issues. In the following, these results are analyzed and

discussed.

6.3.4.1 False Positives

A large percentage of the discovered double fetches can be considered false positives, because they do not

indicate any type of security vulnerability or software bug. For this purpose, we define false positive as a

double fetch that happened but does not cause incorrect behavior. False positives can be again separated

into two overlapping classes: The vast majority of false positives are repeated accesses to synchronization

variable such as mutexes. The second case are double fetches from variables that always include the

necessary security checks after the fetch.

Listing 6. Suspected double fetch in xen-netback. The report generated by the double fetch algorithm
shows repeated accesses to a single memory address.

Listing 6 shows a false positive reported in the xen-netback kernel module. Output from the double fetch

analysis always follows the same output format: The first line lists the memory address that was accessed

multiple times. After that, the first row lists the virtual address of the instruction that performed the

memory access followed by the value of the CR3 register at that point in time. The third row lists a human

readable name of the responsible process or kernel module before the disassembled instruction is printed

at the end of the line.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 79

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

When matching these trace entries to the source code of xen-netback it becomes clear that the accesses

are triggered by repeatedly querying for new requests on the shared ring buffer. Of course, this does not

lead to any kind of security issue.

A second example for a false positive is shown in Listing 7. The double fetch was triggered by the

handle_io function of the xenconsoled process. When looking at the source code of this function it

becomes clear that these memory access are triggered by an inlined function whose simplified code is

shown in Listing 8. The function reads two values cons and prod from shared memory and correctly uses a

memory barrier to make sure the values are stored into registers. Listing 7 shows the double fetch report

for cons, while a second almost identical report was generated for prod. After both values are stored in a

register the unsigned size value is calculated and validated against an upper limit. This code is safe, even

when executed multiple times. A vulnerability would only exist when one of the later accesses to out_cons

or out_prod would not include the validation, but this is not the case making the report a false positive.

Listing 7. Suspected double fetch in xenconsoled.

Listing 8. Safe size calculation in xenconsoled.

6.3.4.2 QEMU xen_disk

One of the more interesting findings returned by the double fetch algorithm affects the block backend

implementation in QEMU, also called xen_disk. QEMU defines two more or less identical helper functions

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 80

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

named blkif_get_x86_64_req and blkif_get_x86_32_req for parsing and copying frontend requests from

shared memory to a private buffer. Listing 9 shows a simplified version of the first function. Knowing that

the src variable points into shared memory, it is easy to see that the three accesses to the nr_segments

field in line 7, 12 and 13 are a typical example for a double fetch vulnerability. The two last accesses are

the most interesting ones, because they could potentially allow for a controlled heap over- flow: The if

condition in line 12 tries to enforce that n never becomes larger than

BLKIF_MAX_SEGMENTS_PER_REQUEST, but this could be bypassed by modifying the value of

nr_segments between the two accesses. This can be used to trigger a heap overflow in the final for loop.

As it turns out, this code is not exploitable in the evaluated system: The reported double fetch lists an

access triggered by line 7 and a second one triggered by the if condition in line 12. The assignment

operation in line 13 is optimized by the compiler and reuses the already fetched value instead of

performing another costly memory operation. Even though this bug does not have any security impact on

our target system, this might change if a compiler optimizes the code in a different way. Therefore, this

potential vulnerability was reported to the Xen maintainers and is planned to be fixed as part of XSA-

155[52]. This result validates our argument from Section 3.2, that source code analysis is not sufficient to

reliably identify double fetch vulnerabilities. In this case an analysis based only on source code would rate

this vulnerability more critical as it is in most real world environments.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 81

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

Listing 9. Double fetch issues in QEMU block backend. src->nr_segments is fetched multiple times

6.3.4.3 Xen-blkback

Another vulnerability was discovered in the xen-blkback kernel module. Listing 10 shows parts of the

vulnerable function xen_blkbk_parse_indirect. In this case the segments array is stored in the shared

memory region. The if conditions in line 9 and 10 perform validation of the last_sect and first_sect

attributes of the current index. If this validation fails processing of the whole array is stopped. However,

both of the validated values are already used before the check and all of these uses are translated into

dedicated memory accesses. This means that an attacker can write malicious values into seg[n].offset and

seg[n].nsec and then modify last_sect and first_sect back to sane values before the check executes. An

exact analysis of the impact of this vulnerability is difficult to perform due to the interdependency of this

code with the Linux block I/O layer. Still, this vulnerability was reported to the Xen maintainers and is

planned to be fixed as part of XSA-155[52].

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 82

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

Listing 10. Double fetch in xen-blkback

6.3.4.4 Xen-pciback

The most critical vulnerability discovered during our evaluation affects the backend driver for

paravirtualized PCI devices: xen-pciback. Listing 11 shows the output generated for this vulnerability by

the double fetch algorithm: Two memory accesses to a single address are performed one is a comparison

with the constant 5 and the second access is a normal read.

Manual analysis shows that both accesses are part of the xen_pcibk_do_op function, which mostly

consists of a big switch statement as shown in Listing 12. op is stored in shared memory, but looking at the

source code alone does not show any signs of a double fetch vulnerability.

Listing 11. Double fetch in xen-pciback

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 83

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

However, the compiled code highlighted in Listing 13 quickly shows the root cause of this issue: The switch

case was compiled into an optimized jump table, which incorrectly accesses the switch condition twice.

Line 1 shows the first access to the op->cmd variable as discovered by the double fetch analysis. The value

is compared to the constant 5 and if it is larger, a jump to the default case of the switch statement is

triggered in line 3. If this is not the case, op->cmd is fetched from memory a second time and is used as an

offset into the jump table in line 5. This is highly problematic, because the second fetch can result in an

arbitrary value giving an attacker complete control over the indirect jump target.

This vulnerability was reported to the Xen security team and is planned to be patched as part of XSA-

155[52]. The next section gives an introduction about how this vulnerability can be triggered and exploited

to achieve arbitrary code execution on the management domain.

Listing 12. Vulnerable switch statement in xen-pciback. op->cmd is stored in shared memory.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 84

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

Listing 13. Assembly of the vulnerable switch statement in xen-pciback. The jump table implementation
fetches the case value twice. This allows an attacker to control the jump destination in line 5

6.3.5 Notes on exploiting xen-pciback

The xen-pciback double fetch vulnerability discussed in the last section is particularly interesting for

multiple reasons: First of all, it cannot be easily detected using source code review. Even knowing that the

op->cmd value is stored in shared memory does not directly lead to the discovery of the vulnerability. In

addition, the bug gives an attacker immediately indirect control over the instruction pointer making it

highly probable that arbitrary code execution can be achieved. Lastly, the race condition can be triggered

as often as needed and does not cause any system instability. If the race is lost, the PCI request will be

considered invalid but this should not have any impact on the overall guest system. Still, the vulnerability

has one relevant downside: The time between the two memory accesses is very small, because only two

instructions are executed in between. Even though one of them is a potentially slower branching

instruction, the time span in which the value has to be manipulated is quite small.

As discussed in Section 2.2, we only consider guests with at least 2 virtual CPUs. Keeping this requirement

in mind the first approach to trigger the vulnerability is quite simple: The exploit starts two processes

scheduled on different CPU cores which both start executing an infinite loop. The first process is

responsible for triggering requests to the xen-pciback module, which is easily possible by generating

some activity on the PCI device. Due to the way the xen-pcifront driver is implemented, these requests will

always reuse the same shared memory area making op->cmd always stay at the same address. By

knowing this address, the second user process can repeatedly iterate between the original harmless value

for op->cmd and a malicious value that triggers a jump to a different instruction pointer. As discussed by

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 85

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

[20], the easiest and fastest way to switch between these two variable states is by using the xor instruction

with a constant value depending on the chosen target value.

Testing the presented approach demonstrates that the short race is no problem in practice. In general, the

race was won after less than ten PCI requests demonstrating the effectiveness of the described approach.

By getting an invalid value past the upper limit check of the jump table implementation, an attacker has

complete control over the lower 32 bits of the RAX register in the jmp QWORD PTR [rax*8+0x0] instruction.

This instruction performs an indirect jump, meaning the pointer at the address rax*8+off_77D0 is fetched

and written into the RIP register. Successful exploitation depends on the ability of an attacker to identify an

offset which points to an attacker controlled value or a valid function pointer. While a complete description

of an exploit for this vulnerability is out of scope for thesis, one possibly approach is outlined in the

following.

On a modern Linux system, the ordering and address ranges of kernel modules is almost completely

randomized. This means that the search for potentially interesting offsets is restricted to the xen-pciback

module itself. In addition the attacker only controls the lower half of the rax register, making it impossible

to insert a negative value and search before the jump table at off_77D0. Still, there are several interesting

possibilities: Almost immediately after the jump table used by the switch statement in the vulnerable

xen_pcibk_do_op function, there is a second jump table used by the xen_pcibk_frontend_changed function

shown in Listing 14. Listing 15 shows how the first of this switch statement is translated into assembly.

The code copies the value of the r13 register into rdi making it the first argument for the subsequent call

to xen_pcibk_attach. When this code is normally called, r13 points to a structure of type xen_pcibk_device,

but when it is instead executed as part of our exploit, r13 points to the attacker controlled shared memory

region. This means we can call the function xen_pcibk_attach that would normally operate on trusted

internal input with an fake structure completely under our control. This opens up a significant number of

further approaches to reach the final goal of arbitrary code execution in the management domain.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 86

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

Listing 14. "Reusable" switch statement in xen-pciback. The jump table generated for this switch
statement can be used to trigger a type confusion after exploiting the xen-pciback double fetch
vulnerability.

Listing 15. Assembly of a reusable switch case. When exploiting the xen-pciback double fetch vulnerability,
r13 points to an attacker controlled location.

r13 points to the attacker controlled shared memory region. This means we can call the function

xen_pcibk_attach that would normally operate on trusted internal input with a fake structure completely

under our control. This opens up a significant number of further approaches to reach the final goal of

arbitrary code execution in the management domain.

6.4 Restricting the Impact of Compiler Optimizations

Besides the vulnerabilities presented above, the large impact of compiler optimization on double fetch

vulnerabilities is a very interesting result of the double fetch analysis. To the best of our knowledge the

xen-pciback double fetch is the first published vulnerability that is triggered by an (incorrectly) optimized

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 87

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

switch statement. On the other hand, the impact of the potential double fetch vulnerability discovered in

QEMU xen_disk is hard to assess without knowing exactly which combinations of compiler, compiler

versions and flags lead to a vulnerable or non-vulnerable result.

An interesting aspect of this is the existence of code that could potentially become vulnerable due to

seemingly irrelevant changes to the rest of the function or the compiler itself. For example, listing 16

shows a switch case from the xen-scsiback backend. Even though it is very similar to the vulnerable one in

xen-pciback and also operates on a variable stored in shared memory, the compiler generated code does

not contain a double fetch. However, this could change when a new case is added,

Listing 16. Potentially vulnerable switch statement in xen-scsiback. ring_reg.act is stored in shared
memory but the compiler does not generate an insecure jump table.

or even if the register allocation of the overall function changes due to modifications. This is of course not

acceptable for such security critical code.

Code that seems vulnerable when looking at the source code, but is compiled correctly due to unenforced

compiler decisions, should be considered insecure and must be fixed. In the case of the code shown in

Listing 9, this is as easy as adding a temporal variable for src->nr_segments and enforcing a single access

to it using a memory barrier.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 88

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

For code such as the two discussed switch statements that only becomes vulnerable due to compiler

optimizations, there are two viable alternatives: First, all variables stored in shared memory could be

marked as volatile, which enforces a 1:1 map- ping between variable and memory accesses. The other,

more preferable approach is to restrict the primitives performed on shared memory variables to two

secure ones: Direct accesses that copy a value into a local variable and which are protected by memory

barriers, and the use of byte based copies that move whole structures from shared to private memory.

This ensures that the compiler does not have the possibility to generate double fetch vulnerabilities by

accident, and also makes it harder for a developer to introduce such vulnerabilities.

6.5 Conclusion

The presented evaluation validates several assumptions stated in the earlier parts of this thesis: The used

memory tracing approach based on hardware-assisted virtualization and EPT permissions is well suited

for the purpose of tracing shared memory communication. One of the main advantages to alternative

approaches based on software emulation is the very low passive overhead. However, the chosen method

introduces a very high active overhead when traced memory pages are heavily used. For use cases where

a lot of memory activity needs to be traced, other approaches that try to improve the performance of

software emulation are more feasible.

The attack surface algorithm correctly identified privileged backend components that operated on the

traced memory regions. However, the evaluation demonstrated an important limitation of this approach.

Because the algorithm does not collect a stack trace, only the immediate function that accesses shared

memory can be identified. This is a problem for cases where these memory addresses are only accessed

using generic copy functions, which makes it harder to identify the component responsible for the access.

A potential improvement of the algorithm could try to extract the call stack when a memory address is

performed. However, reliable detection of stack frames is not trivial in all cases making this quite difficult

in practice.

The double fetch algorithm was able to identify three novel security vulnerabilities in popular backend

components of the Xen hypervisor. This shows the feasibility of our memory traced approach for

vulnerability discovery and indicates that our assumption about the lack of research in this area holds

true. While the evaluation was limited to the Xen hypervisor, these results imply that research on the

inter-domain communication of other hypervisors might be a good idea for further research.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 89

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

Finally, the evaluation demonstrated the big impact of compiler optimizations on double fetch

vulnerabilities. This shows that even seemingly secure source code can be compiled into vulnerable code

and that developers have to be very careful when writing code that operates on shared memory.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 90

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

7. Conclusion

Shared Memory is an important mechanism for efficient inter-process communication. In many cases the

shared memory interface is a trust boundary separating privileged and unprivileged components.

Examples for this include sandbox implementations and the paravirtualized device architecture of

mainstream hypervisors. This makes research on security vulnerabilities affecting these interfaces

important, especially because issues such as double fetches make implementing safe shared memory

communication non-trivial.

In this thesis an approach to discover vulnerabilities in hypervisor inter-domain communication using

memory tracing was presented, implemented and evaluated. In contrast to previous work in this area the

presented approach is based on hardware- assisted virtualization and uses manipulation of EPT

permissions to intercept and analyze memory accesses. This enables targeted tracing of shared memory

communication with a very low passive overhead. The presented implementation is also largely target

independent. Support for analyzing a new hypervisor or more generally a different shared memory

interface can be easily added without a large implementation effort.

The effectiveness of the presented approach was proven by performing an evaluation against the

paravirtualized device drivers of the Xen hypervisor. The evaluation demonstrated that our implementation

fulfills the performance requirements for analyzing a real world hypervisor and that memory tracing can

be used to map the attack surface available to an attacker targeting shared memory communication. Most

importantly, the implemented double fetch analysis algorithm was successfully used to discover three

novel security vulnerabilities in backend components of the Xen hypervisor. This demonstrates that the

presented approach is capable of finding security issues in well audited software and indicates that the

currently used approaches to secure hypervisor related code are not sufficient.

7.1 Future Work

One of the most promising areas for further research is the adaption of our implementation to support

more hypervisors. Currently only the Xen hypervisor is fully supported as a target, but this is mainly due to

compatibility problems concerning the nested virtualization of other hypervisors. Due to the rising

significance of nested virtualization these issues will be hopefully fixed in the near future, allowing for

analysis of these products. In addition, adding target support for popular sandbox implementations and

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 91

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

other security critical shared memory interfaces seems to be a promising extension of the presented

work.

If the reliance on nested virtualization turns out to be a big road block for supporting other hypervisors, an

alternative implementation of the trace collector based on software emulation could be evaluated. While

this removes the advantages of our implementation that depend on the use of hardware-assisted

virtualization, the decoupled nature of our architecture allows the reuse of all analysis components even if

the actual trace collection is implemented completely in software. Current research such as Simuboost

[35] tries to significantly improve the performance of software based emulation and might be a well suited

target for such an implementation.

An alternative extension of the presented approach is the implementation of other analysis algorithms.

While the presented attack surface and double fetch algorithms are very effective for analyzing inter-

domain communication, other algorithms might be more suited for other use cases. In particular, it should

be evaluated if the addition of memory contents to the memory trace could allow the implementation of

more sophisticated algorithms enabling the discovery of other vulnerability classes.

Finally, future work should evaluate how memory access tracing can be used in combination with other

automated approaches for vulnerability discovery. For example, the ability to identify code segments that

operate on shared memory using the presented attack surface algorithm could be combined with static

binary analysis to identify missing validation checks and other security issues. At the same time

mechanisms used for measuring and increasing code coverage during fuzz testing could improve the

performance of the double fetch algorithm by ensuring that all interesting code paths are executed.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 92

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

8. Bibliography

[1]Robert Perry Abbott, Janet S Chin, James E Donnelley, et al. Security analysis and enhancements of

computer operating systems. Tech. rep. DTIC Document, 1976 (cit. on p. 5).

[2]American Fuzzy Lop. http://lcamtuf.coredump.cx/afl/. Accessed: 2015-10-22 (cit. on pp. 23, 24).

[3]Paul Barham, Boris Dragovic, Keir Fraser, et al. „Xen and the Art of Virtualization“. In: Proceedings of

the Nineteenth ACM Symposium on Operating Systems Principles. SOSP ’03. Bolton Landing, NY, USA:

ACM, 2003, pp. 164–177 (cit. on pp. 1, 8, 13, 43).

[4]Fabrice Bellard. „QEMU, a Fast and Portable Dynamic Translator.“ In: USENIX Annual Technical

Conference, FREENIX Track. 2005, pp. 41–46 (cit. on pp. 14, 33).

[5]Al Bessey, Ken Block, Ben Chelf, et al. „A Few Billion Lines of Code Later: Using Static Analysis to Find

Bugs in the Real World“. In: Commun. ACM 53.2 (Feb. 2010), pp. 66–75 (cit. on pp. 22, 23).

[6]Matt Bishop, Michael Dilger, et al. „Checking for race conditions in file accesses“. In: Computing

systems 2.2 (1996), pp. 131–152 (cit. on p. 4).

[7]Capstone. http://www.capstone-engine.org/. Accessed: 2015-10-22 (cit. on p. 48).

[8]David Chisnall. The definitive guide to the xen hypervisor. Pearson Education, 2008 (cit. on pp. 1, 14, 64,

65). 

[9]Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, et al. „Frama-c“. In: Software Engineering and

Formal Methods. Springer, 2012, pp. 233–247 (cit. on p. 23).

[10]CVE-2005-2490. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005- 2490. Accessed: 2015-

10-22 (cit. on p. 5). 

[11]CVE-2011-1750. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1750. Accessed: 2015-10-

22 (cit. on p. 20). 

[12]CVE-2015-2361. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015- 2361. Accessed: 2015-

10-22 (cit. on p. 20).

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 93

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

[13]Brendan F Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek, and Ryan Whelan. „Repeatable Reverse

Engineering for the Greater Good with PANDA“. In: (2014) (cit. on pp. 25, 32, 33).

[14]Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon Giffin, and Wenke Lee. „Virtuoso:

Narrowing the semantic gap in virtual machine introspection“. In: Security and Privacy (SP), 2011 IEEE

Symposium on. IEEE. 2011, pp. 297–312 (cit. on p. 12).

[15]Tal Garfinkel, Mendel Rosenblum, et al. „A Virtual Machine Introspection Based Archi- tecture for

Intrusion Detection.“ In: NDSS. Vol. 3. 2003, pp. 191–206 (cit. on p. 12).

[16]Patrice Godefroid, Michael Y Levin, and David Molnar. „SAGE: whitebox fuzzing for security testing“. In:

Queue 10.1 (2012), p. 20 (cit. on pp. 23, 24).

[17]IDA: About. https://www.hex-rays.com/products/ida/index.shtml. Accessed: 2015-10-22 (cit. on p. 51).

[18]Intel. Intel® 64 and IA-32 Architectures Software Developer Manual. 2015 (cit. on pp. 7– 9).

[19]Alex Ionescu. „Battle of SKM and IUM: How Windows 10 Rewrites OS Architecture“. In: Blackhat USA

2015 (2015) (cit. on pp. 11, 16).

[20]Mateusz Jurczyk and Gynvael Coldwind. „Identifying and exploiting Windows kernel race conditions via

memory access patterns“. In: (2013) (cit. on pp. 1, 4–6, 25, 30–32, 39, 71).

[21]Jan Kiszka, CT T DE IT, and Corporate Competence Center Embedded Linux. „Architec- ture of the

Kernel-based Virtual Machine (KVM)“. In: 2010 (cit. on pp. 16, 17).

[22]Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. „kvm: the Linux virtual machine

monitor“. In: Proceedings of the Linux Symposium. Vol. 1. 2007, pp. 225– 230 (cit. on pp. 16, 33).

[23]Chi-Keung Luk, Robert Cohn, Robert Muth, et al. „Pin: building customized program analysis tools with

dynamic instrumentation“. In: ACM Sigplan Notices. Vol. 40. 6. ACM. 2005, pp. 190–200 (cit. on p. 26).

[24]Jaydeep Marathe, Frank Mueller, Tushar Mohan, et al. „METRIC: Memory tracing via dynamic binary

rewriting to identify cache inefficiencies“. In: ACM Transactions on Programming Languages and Systems

(TOPLAS) 29.2 (2007), p. 12 (cit. on p. 26).

[25]Darek Mihocka and Stanislav Shwartsman. „Virtualization without direct execution or jitting: Designing

a portable virtual machine infrastructure“. In: 1st Workshop on Architectural and Microarchitectural

Support for Binary Translation in ISCA-35, Beijing. 2008 (cit. on p. 32).

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 94

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

[26]A. Milenkoski, B.D. Payne, N. Antunes, M. Vieira, and S. Kounev. „Experience Report: An Analysis of

Hypercall Handler Vulnerabilities“. In: Software Reliability Engineering (ISSRE), 2014 IEEE 25th

International Symposium on. Nov. 2014, pp. 100–111 (cit. on p. 24).

[27]Gal Motika and Shlomo Weiss. „Virtio network paravirtualization driver: Implementa- tion and

performance of a de-facto standard“. In: Computer Standards and Interfaces 34.1 (2012), pp. 36–47 (cit. on

p. 20).

[28]MS08-61: The case of the kernel mode double-fetch. http://blogs.technet.com/b/

srd/archive/2008/10/14/ms08-061-the-case-of-the-kernel-mode-double- fetch.aspx. Accessed: 2015-10-

22. 2008 (cit. on p. 5).

[29]Jun Nakajima. „Making Nested VIrtualization Real by Using Hardware Virtualization Features“. In:

LinuxCon Japan (2013) (cit. on p. 11).

[30]Nested Virtualization in Xen. http://wiki.xenproject.org/wiki/Nested_Virtualization_ in_Xen. Accessed:

2015-10-22 (cit. on p. 44).

[31]Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program Analysis. Secaucus, NJ,

USA: Springer-Verlag New York, Inc., 1999 (cit. on pp. 22, 23).

[32]P. Oehlert. „Violating assumptions with fuzzing“. In: Security Privacy, IEEE 3.2 (Mar. 2005), pp. 58–62

(cit. on pp. 23, 24).

[33]Bryan D Payne. „Simplifying virtual machine introspection using libvmi“. In: Sandia Report (2012) (cit.

on pp. 43, 44).

[34]Marc Rittinghaus, Thorsten Groeninger, and Frank Bellosa. „Simutrace: A Toolkit for Full System

Memory Tracing“. In: (2015) (cit. on pp. 1, 24, 33, 43, 45).

[35]Marc Rittinghaus, Konrad Miller, Marius Hillenbrand, and Frank Bellosa. „SimuBoost: Scalable

Parallelization of Functional System Simulation“. In: Proceedings of the 11th International Workshop on

Dynamic Analysis (WODA 2013). Houston, Texas, Mar. 2013 (cit. on pp. 33, 76).

[36]Edward J Schwartz, Thanassis Avgerinos, and David Brumley. „All you ever wanted to know about

dynamic taint analysis and forward symbolic execution (but might have been afraid to ask)“. In: Security

and Privacy (SP), 2010 IEEE Symposium on. IEEE. 2010, pp. 317–331 (cit. on p. 25).

[37]Konstantin Serebryany and Timur Iskhodzhanov. „ThreadSanitizer: data race detection in practice“. In:

Proceedings of the Workshop on Binary Instrumentation and Applications. ACM. 2009, pp. 62–71 (cit. on p.

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 95

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

4).

[38]Axel Simon. Value-Range Analysis of C Programs: Towards Proving the Absence of Buffer Overflow

Vulnerabilities. 1st ed. Springer Publishing Company, Incorporated, 2008 (cit. on p. 23).

[39]Jim Smith and Ravi Nair. Virtual machines: versatile platforms for systems and processes. Elsevier,

2005 (cit. on p. 9).

[40]Dawn Song, David Brumley, Heng Yin, et al. „BitBlaze: A New Approach to Computer Security via

Binary Analysis“. English. In: Information Systems Security. Ed. by R. Sekar and ArunK. Pujari. Vol. 5352.

Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2008, pp. 1–25 (cit. on p. 22).

[41]W Richard Stevens, Bill Fenner, and Andrew M Rudoff. UNIX network programming. Vol. 2. Addison-

Wesley Professional, 2004 (cit. on pp. 3, 4).

[42]Sulley. https://github.com/OpenRCE/sulley. Accessed: 2015-10-22 (cit. on p. 23).

[43]Andrew S Tanenbaum. Modern operating systems. Pearson Education, 2009 (cit. on pp. 3, 7, 8). 

[44]The Chromium Project: Sandbox. https://www.chromium.org/developers/design-documents/sandbox.

Accessed: 2015-10-22 (cit. on pp. 1, 19). 

[45]R. Uhlig, G. Neiger, D. Rodgers, et al. „Intel virtualization technology“. In: IEEE Computer 38.5 (May

2005), pp. 48–56 (cit. on p. 8).

[46]„Virtual I/O Device (VIRTIO) Version 1.0 - Committee Specification Draft 01 / Public Review Draft 01“. In:

(2013) (cit. on p. 17).

[47]Xi Wang, Nickolai Zeldovich, M Frans Kaashoek, and Armando Solar-Lezama. „Towards optimization-

safe systems: Analyzing the impact of undefined behavior“. In: Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles. ACM. 2013, pp. 260–275 (cit. on pp. 21, 22).

[48]Felix Wilhelm and Matthias Luft. „Security Assessment of Microsoft Hyper-V“. In: (2014). Accessed:

2015-10-22 (cit. on pp. 13, 16).

[49]Carsten Willems, Ralf Hund, and Thorsten Holz. „Cxpinspector: Hypervisor-based, hardware-assisted

system monitoring“. In: Ruhr-Universitat Bochum, Tech. Rep (2013) (cit. on p. 12).

[50]XSA-135: Heap overflow in QEMU PCNET controller, allowing guest->host escape. http:

//xenbits.xen.org/xsa/advisory-135.html. Accessed: 2015-10-22 (cit. on p. 65).

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

ERNW Enno Rey Netzwerke GmbH www.ernw.de Page 96

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

[51]XSA-139: Use after free in QEMU/Xen block unplug protocol. http://xenbits.xen.org/ xsa/advisory-

139.html. Accessed: 2015-10-22 (cit. on p. 65).

[52]XSA-155: Multiple vulnerabilities in paravirtualized devices. http://xenbits.xen.org/ xsa/advisory-

155.html (cit. on pp. 2, 67–69).

[53]Xiantao Zhang and Eddie Dong. „Nested Virtualization Update from Intel“. In: Xen Summit (2012) (cit.

on p. 11).

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/

	0. Abstract
	1. Introduction
	2. Background
	2.1 Shared Memory
	2.2 Double Fetches
	2.3 X64 Virtualization
	2.3.1 Virtualization Fundamentals
	2.3.2 Intel VT-x
	2.3.3 Intel EPT
	2.3.4 Nested Virtualization

	2.4 Virtual Machine Introspection
	2.5 Hypervisor Architecture
	2.5.1 Xen
	2.5.2 Hyper-V
	2.5.3 KVM
	2.5.4 Summary

	3. Analysis
	3.1 Security of Inter-Domain Communication
	3.2 Approaches to Vulnerability Discovery
	3.2.1 Source Code Review
	3.2.2 Static Analysis
	3.2.3 Fuzzing
	3.2.4 Memory Access Tracing and Pattern Analysis

	3.3 Requirements for Memory Access Tracing
	3.4 Conclusion

	4. Design
	4.1 Analysis Algorithms
	4.1.1 Attack Surface
	4.1.2 Double Fetches

	4.2 Approaches for Full System Memory Tracing
	4.2.1 Bochs
	4.2.2 QEMU
	4.2.3 Hardware-Assisted Virtualization
	4.2.4 Comparison

	4.3 Proposed Architecture
	4.3.1 Hypervisor
	4.3.2 Virtual Machine Introspection
	4.3.3 Trace Collector
	4.3.4 Trace Storage

	4.4 Walkthrough
	4.5 Limitations
	4.6 Conclusion

	5. Implementation
	5.1 Components
	5.1.1 Hypervisor
	5.1.2 Virtual Machine Introspection
	5.1.3 Trace Storage

	5.2 Trace Collector
	5.2.1 Identification of Shared Memory Pages
	5.2.2 Tracing of Memory Accesses
	5.2.3 Trace Entries
	5.2.4 Attaching & Detaching

	5.3 Analysis Algorithms
	5.3.1 Attack Surface
	5.3.2 Double Fetches

	5.4 Target Specific Code
	5.4.1 Xen
	5.4.1.1 Identification of shared pages
	5.4.1.2 Interception of shared page updates
	5.4.1.3 Domain Identification

	5.4.2 KVM
	5.4.3 Hyper-V

	6. Evaluation
	6.1 Methodology
	6.2 Evaluation Setup
	6.3 Results
	6.3.1 Performance
	6.3.1.1 CPU/Memory
	6.3.1.2 Paravirtualized Device I/O

	6.3.2 Inter-domain communication characteristics
	6.3.3 Attack Surface Analysis
	6.3.3.1 Xen-Ubuntu
	6.3.3.2 Xen-SLES

	6.3.4 Double Fetch Vulnerabilities
	6.3.4.1 False Positives
	6.3.4.2 QEMU xen_disk
	6.3.4.3 Xen-blkback
	6.3.4.4 Xen-pciback

	6.3.5 Notes on exploiting xen-pciback

	6.4 Restricting the Impact of Compiler Optimizations
	6.5 Conclusion

	7. Conclusion
	7.1 Future Work

	8. Bibliography

		2016-07-17T21:00:44+0200
	Friedwart Kuhn

