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0. Abstract 

Shared Memory is an important mechanism for efficient inter-process communication. When one side of 

the communication has higher privileges than its counterpart, the shared memory interface becomes a 

trust boundary and privileged code operating on it needs to be audited for security vulnerabilities. 

In this thesis we present an approach based on memory tracing to discover vulnerabilities in shared 

memory interfaces. In contrast to other works in this area, the presented implementation is based on 

hardware-assisted virtualization and uses manipulation of EPT permissions to intercept memory 

accesses. 

We evaluate our implementation against paravirtualized device drivers for the Xen hypervisor, which use 

shared memory for inter-domain communication. Besides successfully identifying the privileged 

components responsible for processing untrusted shared memory data, the presented analysis algorithms 

are used to discover three novel security vulnerabilities in security critical backend components. 

This newsletter is a slightly revised version of the authors master thesis “Tracing Privileged Memory 

Accesses to Discover Software Vulnerabilities” which can be found in full under the following URL: 

https://os.itec.kit.edu/downloads/ma_2015_wilhelm_felix__discover_software_vulnerabilities.pdf 
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1. Introduction 

Memory pages shared between different execution contexts are a fundamental communication 

mechanism of modern computer systems. In many cases one side of the communication has higher 

privileges and needs to protect itself against malicious behavior of its counterpart. Examples for this 

situation include communication between userland and kernel space [20], sandbox implementations of 

modern web browsers [44] and the inter-domain communication of popular hypervisors [8]. 

In addition to classic software vulnerabilities, such as missing validation and verification, shared memory 

interfaces can suffer from a special type of race condition called double fetch vulnerability. Bochspwn [20] 

first demonstrated how these issues can be used for local privilege escalation attacks against the 

Windows kernel and how memory tracing can be leveraged to identify these vulnerability types 

automatically. While Bochspwn was successfully applied in the context of user-kernel interaction, its 

reliance on an instrumented version of the Bochs CPU emulator leads to an extremely high overhead and 

bad performance. This limits its suitability for the analysis of more complex software environments. 

The objective of this thesis is the discovery of software vulnerabilities in the inter- domain communication 

interfaces of mainstream hypervisors. To achieve this goal, this thesis presents and implements an 

approach to discover such vulnerabilities by tracing and analyzing all privileged read and write accesses to 

shared memory pages. We improve upon the research presented in [20], by designing and implementing a 

toolkit for memory access tracing and pattern analysis using hardware-assisted virtualization and 

modified page table permissions. 

In comparison to approaches based on software emulation, this reduces the passive overhead significantly 

and allows the targeted tracing of shared memory communication even in very complex environments. The 

presented implementation is based on the open source Xen hypervisor [3] as platform for nested 

virtualization and uses Simutrace[34] as highly efficient trace storage, allowing for the collection and 

offline analysis of even long running traces. Furthermore, large parts of the design and implementation 

are completely target agnostic, making them reusable for analysis of different hypervisors and even other 

shared memory interfaces such as sandbox implementations. 

The effectiveness of the presented approach is evaluated by analyzing the security aspects of 

paravirtualized devices in Xen. Besides being able to identify the privileged components that can be 

targeted by an attacker, our implementation 

https://www.ernw.de/
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is able to discover three novel security vulnerabilities affecting the Xen hypervisor. These vulnerabilities 

were reported to the Xen maintainers and were assigned XSA-155[52]. 

The remainder of this work is structured as follows: Chapter 2 discussed several core concepts required 

for this thesis. Besides introducing shared memory communication and double fetch vulnerabilities in 

general, the different types of virtualization on the Intel x64 architecture are presented. This is followed by 

an introduction into the concept of virtual machine introspection and a detailed discussion of the overall 

architecture of three mainstream hypervisors. Chapter 3 highlights the problem of security for inter-

domain communication and reviews several different ways for discovering vulnerabilities in these 

interfaces. After this, the proposed design of our solution is presented in Chapter 4. Important aspects of 

the implementation are reviewed in Chapter 5, before the results of the performed evaluation are finally 

presented in Chapter 6. The thesis finishes with a final conclusion and a discussion of further research 

topics in Chapter 7. 
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2. Background 

This chapter introduces the technical concepts and terminology required for the rest of this thesis. Section 

2.1 introduces the idea of shared memory communication and the reasons for its popularity. In 

comparison to other IPC mechanisms, shared memory can suffer from a special type of vulnerability 

called double fetch, which is introduced in Section 2.2. The chapter continues with Section 2.3, which 

describes virtualization on the Intel x64 architecture, concentrating on the Intel VT-x extensions. After an 

introduction into Virtual Machine Introspection (VMI) in Section 2.4, the chapter concludes with an overview 

about the architectures of three mainstream hypervisors in Section 2.5. 

2.1 Shared Memory 

Shared memory is one of most widespread inter-process communication (IPC) methods [43, 41]. The main 

reason for its popularity is the performance advantage in comparison to other message based IPC 

mechanisms such as pipes or message queues, which are implemented on top of system calls. 

 

Figure 2-1: Memory copies during IPC 

As described in [41] and visualized in Figure 2.1, passing data between two processes using a message 

oriented approach requires at least two additional copies: The sender triggers a copy from user space to 

kernel, while the receiving side needs to copy into the other direction from kernel back into the user space 

process. 

For shared memory IPC there is no such overhead. Instead, there is a one-time setup cost when the 

shared memory section is created. While the exact APIs to initialize differ between operating systems or 

hypervisors, the implementation is always the same: One or more physical memory pages are shared by 

https://www.ernw.de/
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mapping them into the virtual address space of multiple execution contexts. When talking about operating 

systems, an execution context normally just corresponds to another user space process, but the 

mechanism stays the same when talking about different virtual machines. After this page mapping is 

created, data transfers between two contexts do not require any involvement of the kernel (or hypervisor). 

Instead, simple memory reads and writes can be used, reducing the need for expensive copy operations. 

Depending on the exact use case, zero copy protocols are possible, which have very good performance 

characteristics. 

Some kind of synchronization method between the communication partners is required when shared 

memory is used. To do this, all standard synchronization techniques such mutexes, locks and semaphores 

can be used on top of shared mem- ory [41]. However, there is an important limitation to note: These 

synchronization methods require all communication partners to participate, they cannot enforce it. No 

widespread shared memory APIs include functionality comparable to a mandatory file lock, which is 

enforced by the underlying layer. This is normally not a problem when all communication participants 

operate on the same privilege level. While a misbehaving side could interrupt the communication, this 

cannot be considered a security issue. If, however, the shared memory interface is a trust boundary and 

one side has less privileges, such issues can become much more interesting from a security perspective. 

Even though there is a large amount of research concerning the safe use of shared resources, they 

concentrate on insecure behavior triggered by incorrect use of synchronization primitives. A recent 

example is ThreadSanitizer [37], an instrumentation based data race detector for C and C++ software. 

However, this research is only partially applicable, because it does not take the existence of a malicious 

communication partner into account. High-level synchronization methods are not enforced in shared 

memory interfaces, which means they can simply be ignored, triggering potential vulnerabilities. 

One example for such a vulnerability type is called double fetch, which will be introduced in the following.  

 

2.2 Double Fetches 

Double fetches are a special type of Time-of-Check-to-Time-of-Use (TOCTTOU) bugs [20]. TOCTTOU bugs 

exist when data can be manipulated between verification or validation - the time of check - and the time of 

use. 

The probably best known examples of TOCTTOU bugs affect file system accesses [6]: A privileged process, 

for example a setuid binary, checks that a file is owned by an unprivileged user and then performs a 

https://www.ernw.de/
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modification to this file on behalf of the user. If the permission check and the modification are separate 

actions, an attacker can replace the file with a symbolic link to a system file. If the timing is right 

and this replacement happens right after the check is performed but before the actual modification 

happens, unauthorized manipulation of important files might be possible. 

While, TOCTTOU bugs exist in different software layers and in different environments, the core principle is 

always the same. A description of this bug class can be found in [1] published in 1976: 

"Whenever there is a "timing window" between the time the control program verifies a parameter and the 

time it retrieves the parameter from shared storage for use, a potential security flaw is created. This is 

because contemporary operating systems allow a user to have two or more activities (processes) 

executing concurrently." 

We use the term double fetch to describe potential TOCTTOU vulnerabilities where the shared medium is a 

shared memory region. This terminology was introduced by Fermin J. Serna in a post on the Microsoft 

Security and Defense blog [28]. One of the main inspirations for this work is Bochspwn[20], a Bochs based 

toolkit to discover double fetch vulnerabilities in the Windows kernel. While Bochspwn uses software 

emulation to generate memory traces and does not target shared memory communication, it introduces 

several of the core concepts of this thesis. Besides being the first to try to discover double fetch 

vulnerabilities using memory access tracing, they also introduce the ability to separate tracing and 

analysis steps. In addition, the possible extension of the approach with more analysis algorithms and by 

using hardware-assisted virtualization is mentioned even when no details regarding the implementation of 

these extensions are given. 

Most published examples of double fetch vulnerabilities affect the interface between user space and 

kernel: Listing 1 shows a vulnerability in the sendmsg system call handler of the Linux kernel fixed in 

2005[10]. In line 5 the copy_user macro is invoked to dereference a pointer into user space and copy the 

value of the cmsg_len field into a local variable umclen. umclen is used to calculate a length for the final 

data structure, which is allocated using a call to kmalloc in line 15. However, before the data is copied into 

the allocated structure in line 20, umclen is again initialized with the value from user space in line 18. 

This is a classic example of a double fetch vulnerability. If an attacker is able to win the race condition and 

exchange the value of cmsg_len between the first and the second access, an exploitable heap overflow can 

be triggered. While this specific bug can be easily identified in the source code, this is not always the case. 

Listing 2 shows CVE-2013-1278 first presented in [20]. The vulnerable code pattern was discovered in 

multiple system call handlers, this specific example is extracted from the nt!ApphelpCacheLookupEntry 

https://www.ernw.de/
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function. edi stores a user space pointer and the ProbeForWrite function is used to make sure that the 

pointer at offset 0x18 of 

 

Listing 1. Double fetch in sendmsg system call. 

edi is a writable user space address. When the arguments are passed to memcpy, this pointer is fetched a 

second time from user space memory. If the data is exchanged between these two accesses, arbitrary 

kernel memory can be corrupted. As shown in [20], this can be used for a local privilege escalation attack 

against vulnerable systems. Because no source code for nt!ApphelpCacheLookupEntry is publicly 

available, it cannot be evaluated if the double fetch is the result of two C pointer dereferences or of a 

compiler optimization. 
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Listing 2. Double fetch in nt!ApphelpCacheLookupEntry 

The exploitability of double fetch vulnerabilities is discussed in detail in [20]. On single core systems, races 

might not be winnable under all circumstances if a context switch never occurs between the time of check 

and the time of use. However, for multi core systems even very short race conditions can be exploited as 

long as a loss does not trigger a system crash or a similar irreversible condition. Because modern 

virtualization environments are always operating in a multi core environment, we consider even short race 

conditions as exploitable for the purpose of this thesis. 

2.3 X64 Virtualization 

A core topic of this thesis is virtualization on the Intel 64bit (x64) architecture. The main evaluation targets 

are the inter-domain communication mechanisms of popular hypervisors and the proposed and 

implemented solution heavily relies on hardware- assisted virtualization. Therefore, this section 

introduces the core challenges of virtualization on Intel systems and discusses the hardware virtualization 

features added in recent processor generations. In order to concentrate on mechanisms relevant for this 

thesis, several topics such as interrupt virtualization and System Management Mode are ignored in the 

following. 

2.3.1 Virtualization Fundamentals 

In a traditional system the operating system has full control over all hardware resources. A virtualized 

system introduces a new software layer called virtual machine monitor (VMM) or hypervisor. The VMM is 

responsible for managing access to the hardware for each running virtualized system. Each virtualized 

system, also called virtual machine (VM), consists of virtual memory, one or more virtual CPUs and 

https://www.ernw.de/
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virtualized devices. In general, a VMM gives a guest operating system the illusion to be running on real 

physical hardware. Hypervisor can be separated into type-1 and type-2 hypervisors[43]: type-1 hypervisors 

run directly on the hardware, while type-2 hypervisors run on top of a normal operating system. 

One important requirement in general purpose virtualization is that one VM can not influence the 

execution of other VMs running on the same physical host. This means virtual memory, CPUs and devices 

must be isolated from each other and access to privileged operations on the real hardware must be 

restricted. Privileges on x64 are implemented using a ring model[18]: A processor always operates in a 

ring between 3 and 0, where ring 0 is the most privileged operation mode. Only code running in ring 0 has 

accesses to privileged instructions, the complete memory space and memory mapped or port based IO. Of 

course normal OS kernels operate under the assumption that they are running in ring 0. However, 

unrestricted access to all these privileged operations violates the isolation requirement of isolation. There 

are two practical approaches to solve this problem in software: binary translation and pravirtualization. 

Binary translation was pioneered by VMWare[43]. The hypervisor dynamically replaces privileged 

operations with emulated versions that operate on the virtual hardware. Paravirtualization, first 

implemented by the Xen hypervisor[3], requires modification of the guest operating system to replace all 

privileged operations with calls to a hypervisor API. The guest kernel is then moved to a less privileged 

ring, while the hypervisor is the only code still operating in ring 0. Both approaches are quite successful 

but they have important downsides. Binary translation does not require modification of the guest operating 

system and can reach a surprisingly high performance level, but the engineering effort for creating a 

production ready hypervisor using this approach cannot be overestimated. On the other hand, 

paravirtualization uses the standard hardware protection mechanisms and allows for a very small and 

simple hypervisor, but requires modification of the guest system. Because of these difficulties with pure 

software based approaches and the rising demand for virtualization on the x64 architecture, Intel 

introduced the VT-x extensions [45] in 2005. Nowadays hardware-assisted virtualization using the Intel VT 

extension or the similar implementation by AMD are by far the most relevant virtualization types in 

productive use. 

2.3.2 Intel VT-x 

VT-x adds two additional CPU modes [45]: VMX non-root operations and VMX root operations. The ring 

privilege level still exist in both operation modes, so code could be operating in ring 3 in VMX root mode or 

in ring 0 in non-root mode. The hypervisor runs in root mode, while all guests operate in non-root mode. 

Context switches between root mode and non-root mode are called VM entries and VM exits. These 

https://www.ernw.de/
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transitions and the operation of the processor in non-root mode is managed using a newly introduced data 

structure called virtual machine control structure(VMCS). The VMCS is separated into six logical groups 

[18]: 

Guest-State. Saves the processor state on a VM exit. Is used to restore it on a VM entry. 

Host-State. Processor state is loaded from here on a VM exit. 

VM execution control fields. These fields control processor behavior when operating in non-root mode. 

VM entry control fields. These fields control the VM entry behavior. VM exit control fields. These fields 

control the VM exit behavior. 

VM exit information fields. These fields contain information about the most recent VM exit. 

Management of the VMCS can be performed by using a number of newly introduced instructions that are 

only available in root mode: They include VMPTRLD and VMPTRST to load and store pointers to the 

currently used VMCS. VMREAD and VMWRITE to read and write VMCS fields and VMLAUNCH or 

VMRESUME to trigger a VM entry. 

Code executing in VMX root mode behaves the same way as before, but when the CPU is operating in non-

root mode, privileged operations can be trapped and handled by the hypervisor. Certain instructions like 

WRMSR or CPUID always trigger a VM exit, the behavior of others can be configured using the execution 

control fields in the VMCS. Interestingly, many privileged instructions do never trigger an VM exit because 

they transparently operate on VM specific data when executed in non-root mode. This includes all 

instructions involving interrupt and exception handling [18]. 

The trap and emulate approach enabled by these additions is sufficient to protect the hypervisor and other 

guests from a misbehaving or malicious virtual machine: All instructions that directly access hardware 

features can be trapped and emulated safely. Because all accesses to the CR3 register are intercepted, 

the hypervisor can enforce a strict separation between its own linear address space and those used by 

different VMs. In early versions of Intel VT, the hypervisor was required to keep track of the relation 

between a guest physical and the machine physical address space using a mechanism called shadow page 

tables[39]. When using this approach, a hypervisor is forced to intercept all page faults or page table 

updates in the VM to keep the shadow page tables in sync with their virtual equivalent. Of course, this 

triggers a high amount of VM exits, degrading the overall performance. To improve performance, Intel 

decided to introduce an additional hardware feature called extended page tables (EPT). 

https://www.ernw.de/
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2.3.3 Intel EPT 

Extended page table is Intel’s name for a hardware feature also known as second level address translation 

or nested paging. EPT introduces the concept of guest- physical address [18]. The guest is in full control of 

its own page tables and address translation inside the virtual machine works the same as on a non-

virtualized system. But after the normal address translation has finished, the processor performs an 

additional translation step going from the guest-physical to the real physical address. As shown in Figure 

2.2, EPT translation uses an extended page table pointer (EPTP) stored in the VMCS execution control 

fields and performs a 4 level deep page-walk through EPT paging structures, very similar to the one 

performed for normal address translation. 

 

Figure 2-2. Intel EPT Address Translation. 

 

The main advantage of EPT is the reduction of VM exits and the offloading of virtualized memory 

management to the hardware layer. This means the hypervisor code can be significantly simplified and 

does not have to be concerned with any page table updates performed by the guest. The memory 

separation is enforced by the hardware as long there is no overlap between the EPT structures used by 

two virtual machines or the memory pages of the hypervisor itself. 

All EPT structures including the EPT page table entry contain fields controlling the access permissions of 

the referenced physical memory page(s). For example, this can be used by the hypervisor to share a read-
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only page with his guests. When a VM performs a disallowed access on a guest-physical memory address, 

an EPT violation is triggered leading to a VM exit. This behavior is completely transparent to the virtual 

machine and can be used for implementing copy-on-write optimizations or to collect data about the 

behavior of the VM. 

2.3.4 Nested Virtualization 

Nested virtualization describes the concept of running a hypervisor as a virtual machine on top of another 

hypervisor. In order to keep the terminology unambitious, we call the outer hypervisor the level 0 (L0) 

hypervisor and the inner one level 1 (L1). The L1 hypervisor is just a special type of L1 guest and can run in 

parallel with other guests and even additional L1 hypervisors. Finally, level 2 (L2) guests run on top of the 

L1 hypervisor. Figure 2.3 visualizes these connections. 

 

Figure 2-3. Nested virtualization terminology 

The main use case for nested virtualization is the ability to run a hypervisor in a cloud environment [53]. 

More recently, Microsoft started to use its Hyper-V hypervisor as a way to isolate security critical 

components from the normal operating system starting with Windows 10[19]. Because this practically 

turns the Windows 10 operating system into a Hyper-V VM, support for nested virtualization is required to 

install additional virtualization software on the system. Currently most mainstream hyper- visors only 

have partial support for nested virtualization, but current development efforts [29, 53] indicate that this will 

change in the next years. 

Mixing two different types of virtualization can often work without any problems. A L0 hypervisor based on 

Intel VT can host a L1 hypervisor based on binary translation or para-virtualization without any special 

support. It starts to get more complex when two hypervisors based on Intel VT are nested, which of course 
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is the most relevant use case. The L1 hypervisor operates in non-root mode but stills needs the 

impression that it is operating in root mode. This means all Intel VT management instructions need to be 

trapped and emulated by the L0 hypervisor. 

Recent extensions of Intel VT try to minimize additional VM exits introduced by nested virtualization as 

much as possible [53]. For example, VMCS Shadowing enables the L1 hypervisor to operate on a shadow 

VMCS structure without triggering VM exits. Using these features, Intel states a performance loss of only 

20% comparing a L1 system to a L2 one [29]. 

2.4 Virtual Machine Introspection 

The concept of Virtual Machine Introspection (VMI) was first introduced in [15] and was defined as an 

„approach of inspecting a virtual machine from the outside for the purpose of analyzing the software 

running inside it“. VMI is traditionally used in the context of malware detection and analysis. In this context 

it has a number of advantages compared to more traditional host based intrusion detection systems (IDS). 

In a standard host based IDS or sandbox, a software agent is running in the same system as the malware. 

This requires the agent to rely on the trustworthiness of the operating system, which might be a 

dangerous assumption if the malware is able to compromise the OS kernel [15, 14]. Furthermore, a 

hypervisor based inspection can be almost completely hidden from the analyzed system. This means that 

it is difficult for a malware to simply detect that it is running in a protected or analyzed environment and 

stop execution [49]. Other features offered by virtualization, like the ability to create and restore snapshots 

of a running system are also very helpful in the context of malware analysis, making VMI a logical next 

step. 

The hypervisor has complete access to all state of the virtual machine, including CPU registers, memory 

and the virtual hard drive. This means that at any point in time the current state of the VM can be 

completely analyzed. In addition, the ability to trap on specific actions of the running malware, is a 

requirement for efficient analysis. This is quite trivial for software based emulation but more difficult for a 

hypervisor based on hardware-assisted virtualization. While a very limited form of this trapping could be 

implemented using software or hardware breakpoints, the authors of [49] describe a more scalable 

approach by using EPT permissions: By marking specific pages of VM memory as non-executable, the 

execution of the VM can be traced by analyzing EPT violations. This idea of using EPT permissions as a way 

to trap on actions performed in the virtual machine is a core concept used in this thesis and will be 

discussed in-depth in later chapters. 

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/


 

ERNW Enno Rey Netzwerke GmbH www.ernw.de  Page 18 

Carl-Bosch-Str. 4 www.troopers.de  

69115 Heidelberg www.insinuator.net  

 

2.5 Hypervisor Architecture 

Even though all mainstream hypervisors for the Intel x64 architecture are at least partially based on the 

Intel VT instruction set and the hardware virtualization support, their overall architecture differs quite 

strongly. In this chapter the architectures of three of the most popular hypervisors are discussed: Xen, 

Hyper-V and KVM. These particular hypervisors were chosen for multiple reasons. First of all, all three are 

widely used and have a mature and feature rich ecosystem. Second, due to the open source nature of KVM 

and Xen, there architecture is very well documented and implementation details can be easily discovered 

by reading the available source code. While Hyper-V is a proprietary closed-source hypervisor, the overall 

architecture is quite similar to the one of Xen. The paravirtualized device drivers used by Hyper-Vare also 

implemented on top of shared memory [48], making it well suited for this thesis. 

In the following discussion, special focus rests on the interfaces used for inter-domain communication as 

this part of the architecture is the most relevant one for the topic of this thesis. 

2.5.1 Xen 

 

Figure 2-4. Xen architecture 
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Xen[3] is an open source type 1 hypervisor with support for ARM, x86 and x64. Originally a research project 

at Cambridge University, the first version of the Xen hypervisor was released in 2003. With no Intel VT 

instruction set available at that point in time, the authors were the first to introduce paravirtualization on 

the x86 architecture. Instead of software emulation or complex binary translation as per- formed by other 

implementations at this time, Xen’s paravirtualized virtual machines run modified versions of the guest 

operating system. The modified kernels do not rely on privileged instructions or direct hardware access 

and instead communicate with the hypervisor using a set of APIs. Modern versions of Xen also support 

Intel VT and unmodified guest systems, running as so called hardware virtualized machines (HVM) guests. 

Figure 2.4 gives an overview of the Xen architecture and the naming conventions used. The core Xen 

hypervisor operates directly on top of the hardware and hosts a number of virtual machines called 

domains. The management domain, called dom0 is a normal Linux system running all the management 

tools required for configuration and operation of the hypervisor and its guests. The management tools 

communicate with the hypervisor using the hypercall API, an interface very similar to the normal system 

call interface used by operating systems. The decision to put all management software into a dedicated 

guest system makes it possible to keep the hypervisor itself relatively simple. 

Next to the privileged management domain, two normal unprivileged guests, called domU are shown in 

the Figure. The first domU is a paravirtualized guest. It runs a modified guest kernel, that does not interact 

with the real hardware in any way. Instead, the kernel communicates directly with the hypervisor using the 

hypercall API. Even though this is the same API that is also used by the management stack, all privileged 

functionality is restricted to dom0, and the domU kernel is only allowed to perform actions that affect its 

own VM. 

The paravirtualized guest also requires virtual hardware devices. These are implemented in two parts, the 

frontend and backend components: The frontend driver runs in domU and plays the role of a normal 

hardware device driver in the guest OS. When an action is performed on the virtual device, the frontend 

driver uses a communication mechanism called XenBus to send a request to the backend driver operating 

in dom0. Depending on the type of device the backend driver can process the request completely in 

software or forward it to a real hardware device. 

In comparison to paravirtualized guests, HVM domains do not require special support for Xen. CPU and 

memory are virtualized with the help of Intel VT and EPT, but the domain still needs access to hardware 

devices. To enable this, Xen uses device emulation offered by the QEMU system emulator[4]. By default 

each running HVM guest has a corresponding QEMU process running in dom0. QEMU emulates old 
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standard devices that are well supported by all mainstream operating systems. Thanks to this, no special 

drivers are required and a completely unmodified operating system can run in the domain. Still, in practice 

pure HVM guests are rarely used. Instead of the relatively slow emulated devices offered by QEMU, the 

HVM guests can use the same frontend drivers as paravirtualized guests. This means that the inter-

domain communication between frontend and backend drivers is a potential attack surface irregardless of 

the domain type, making it particular interesting. 

The core mechanism used for inter-domain communication in Xen is shared memory. Sharing memory 

between two domains is implemented using a data structure called grant table and the grant_table_op 

hypercall that operates on it[8]. Using the grant table functionality, two domains can share physical 

memory pages between each other. This mechanism is used by the paravirtualized drivers to implement 

I/O rings for performing the actual communication. An I/O ring is a simple ring buffer used for 

asynchronous communication. The same ring can be used for sending as well as receiving data and a 

mechanism called event channel is used for notification after new data was written into the I/O ring [8]. 

While the use of I/O rings based on shared memory pages is not a hard requirement for paravirtualized 

drivers, the protocol has been adopted by all standard Xen drivers. Device drivers that require large data 

transfers between domains like block or network devices often implement on demand mapping of shared 

memory pages for bulk data transfers. 

The split driver model used by Xen gives a large amount of freedom regarding the implementation of the 

backend driver. Depending on performance or security requirements, a backend driver could be 

implemented as an independent user space process, a QEMU extension or as a Linux kernel module. In 

some cases this is even configurable by the end user. For example, the backend component of the Xen 

blkfront driver that is responsible for offering virtual block devices to a guest VM can be the xen-blkback 

kernel module, the xen_disk implementation of QEMU or one of multiple variants of blktap, a user space 

daemon. 

From a security standpoint, the most relevant aspect of the Xen architecture is the privileged role of the 

management domain dom0. Even though it is a virtual machine it has access to the complete state of all 

other guests and can directly communicate with the hardware. For most environments, this makes a 

compromise of dom0 as critical as a compromise of the Xen hypervisor itself. Consequently, attacks on the 

backend components of paravirtualized drivers are very relevant. Even more so for backend components 

that are implemented in the kernel, because a vulnerability in one of these can directly lead to a full dom0 

compromise. 
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2.5.2 Hyper-V 

 

Figure 2-5. Hyper-V architecture 

Hyper-V is a closed source type-1 hypervisor developed by Microsoft. In contrast to earlier Microsoft 

virtualization products such as Virtual PC, Hyper-V is completely based on hardware-assisted 

virtualization with support for Intel VT as well as AMD SVM. Besides being advertised as the main 

virtualization solution for Windows servers, Hyper-V is used in the Xbox One console, the Microsoft Azure 

cloud[48], and as an additional security layer on the client starting with Windows 10[19]. 

The Hyper-V architecture is strongly inspired by Xen as can be seen in Figure 2.5. Instead of calling the 

guests domains, they are called partitions and the root partition has the same role as dom0. Accordingly, 

domU’s are called child partitions. As in Xen, all management components are running in the root 

partition, keeping the hypervisor itself as small as possible. 

While all partitions use hardware-assisted virtualization for CPU and memory, Hyper- V differentiates 

between enlightened and unenlightened partitions, depending on their use of paravirtualized device 

drivers and the hypercall API. Unenlightened partitions depend on emulated devices and do not know 

about the hypercall API, while enlightened partitions rely on paravirtualized devices and hypercalls to 

enable better performance. Instead of using QEMU for device emulation, this functionality is included in 

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/


 

ERNW Enno Rey Netzwerke GmbH www.ernw.de  Page 22 

Carl-Bosch-Str. 4 www.troopers.de  

69115 Heidelberg www.insinuator.net  

 

the VM Worker Process (VMWP). Each running child partition has a worker process assigned, which is 

heavily restricted using the Windows permission model [48]. The split driver model of Xen for 

paravirtualized devices is also used by Hyper-V: The backend component is called Virtualization Service 

Provider (VSP) and the frontend part is the Virtualization Service Client (VSC). 

Communication between two partitions occurs with a communication mechanism called VMBus and guest 

physical address descriptor lists (GPADL) used for data transfer. The VMBus interface implements a ring 

buffer similar to the I/O rings used by Xen. Large data transfers are implemented by mapping the guest 

pages into the address space of the root partition. 

In summary, the Hyper-V architecture is more or less identical with the one used by Xen. Fully 

paravirtualized domains are not available, but other than that each Xen component has a corresponding 

replacement in Hyper-V. Consequently, the same security properties that were described in the last 

section also hold true for Hyper-V. 

2.5.3 KVM 

KVM, which stands for Kernel-based Virtual Machine, is an open-source hypervisor for Linux systems on 

the x86 architecture [22]. KVM requires support for hardware- assisted virtualization and supports both 

the Intel VT and AMD SVM extensions. In comparison to the textbook design of Xen and Hyper-V, KVM is 

deeply integrated into the Linux kernel leading to a more unconventional architecture as visualized in 

Figure 2.6. It consists of a Linux kernel module (kvm.ko) that adds virtualization capabilities to a Linux 

system. While this deep integration with Linux makes the architecture less clean than the previous two 

examples, it has a number of advantages [21]: First of all, large parts of the kernel code can be reused to 

implement the hypervisor functionality. This includes scheduling, memory and power management. In 

addition, communication involving a guest VM, the host VM, and the hypervisor only requires a single full 

context switch, because host and hypervisor share a single address space. This can give a better 

performance than the completely isolated address space of the Xen and Hyper-V hypervisors. 

KVM also depends on QEMU for device emulation, similar to Xen. However, the integration between QEMU 

and KVM goes much further: The complete physical address space of each guest is mapped into its 

corresponding QEMU process. This makes KVM virtual machines look similar to a normal user space 

process and allows for easy enforcement of memory limits and swapping [21]. 

Paravirtualized drivers are implemented on top of the virtio mechanism. Virtio is designed to be a 

hypervisor independent standard for the implementation of paravirtualized devices [46]. The virtio 
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specification describes how device initialization, teardown and configuration of virtual devices are 

performed and defines the virtqueue structure as the main way to transfer data between frontend and 

backend components. Again, the virtqueue is implemented on top of shared memory. Because the guest 

memory is mapped into the QEMU process, no special way of mapping guest pages is required. Instead, 

the host can simply access the queue memory using the mapping provided by the QEMU process. 

While the exact implementation of the virtio mechanism and the general architecture of KVM differ quite a 

bit from Xen and Hyper-V, the attack surface and security impact of virtio backend components is identical 

to the one of the other presented implementations. 

 

Figure 2-6. KVM architecture 

2.5.4 Summary 

In summary, all of the three presented hypervisors have support for paravirtualized device drivers. All 

implementations operate with a split driver model, where a backend component is running in the 

management system while a frontend component is executing in the virtual machine. Most importantly, 

the communication between these two components always involves shared memory pages, making them 

an apt evaluation target for this thesis. The security boundary enabled by the backend components is well 

known by the hypervisors’ developers. All three discussed implementations offer ways to restrict the 

privileges of backend components to reduce the impact of a vulnerability: Hyper-V uses the Windows 

permission model to restrict the worker process responsible for implementing user space backend 

drivers. KVM uses SELinux for the same purpose and Xen has the ability to move the QEMU process to a 

single purpose stub domain with restricted privileges. Still, for performance reason many backend 
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components are directly implemented in the kernel of the management system, making full isolation 

impossible. 
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3. Analysis 

Shared memory, meaning memory pages simultaneously accessible from two different execution 

contexts, is a core mechanism used for local inter process communication. Data transfers over shared 

memory pages do not suffer from any significant overhead. In addition, arbitrary complex data structures 

can be exchanged without the need for serialization. In some cases, the two sides communicating over 

shared memory have different privileges, making the interface a potential target for attacks. Examples for 

this situation include the communication between user-space software and the kernel, and sandbox 

implementations of modern web browsers like Google Chrome [44]. 

This thesis concentrates on shared memory communication in the context of system virtualization: As 

discussed in Section 2.5, all mainstream hypervisors use shared memory for high performance inter-

domain communication. Most prevalent use cases for virtualization have high security requirements. In 

many cases, some of the virtual machines running on a physical host have to be considered malicious. This 

could be because non-trusted consumers operate them like in a public cloud system, the VM is used for 

malware analysis or simply because the applications running inside the virtual system have a large 

external attack surface. Of course, this makes the inter-domain communication interface a trust boundary 

and a particularly interesting attack surface to analyze. 

The goal of this thesis is the identification and implementation of an approach for efficient vulnerability 

discovery in shared memory interfaces with a special focus on inter-domain communication. In the 

following sections, different approaches to discover vulnerabilities in these interfaces are compared. 

Following this, the requirements of the memory tracing based approach chosen for this thesis and its 

suitability for finding different vulnerability types are discussed. 

3.1 Security of Inter-Domain Communication 

The discussion of hypervisor architectures in Section 2.5 already introduced the concept of inter-domain 

communication: Besides offering a way to communicate directly with the hypervisor, all discussed 

solutions also have a way to enable direct communication between different virtual machines. These 

mechanisms are used for the implementation of paravirtualized devices. In contrast to the traditional 

emulation approach discussed in the last chapter, paravirtualized devices require the installation of 

special drivers in the virtual machine. However, they compensate for this by offering a bigger feature set 
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and much higher performance. For example, [27] demonstrates a bandwidth improvement of more than 

50% when comparing a paravirtualized virtio device to an emulated network device. 

 

Figure 3-1. Paravirtualized device architecture. 

Paravirtualized devices are implemented using two components as shown in Figure 3.1: 

1. A backend driver in the management domain is responsible for translating virtualized requests 

like disk writes or network packets to actual actions. In some cases, this can be a simple as 

forwarding a buffer to the real hardware devices, in others the resulting logic might be 

completely implemented in software. Backend drivers can run in both user and kernel space. 

2. A frontend driver in the guest plays the role of a normal device device driver. Instead of 

communicating with actual hardware, requests send to the driver are instead relayed to the 

backend driver using a shared memory interface. 

Of these two main components, the backend driver is the security critical one. Vulnerabilities in the 

backend driver that can be triggered from the frontend can allow a malicious virtual machine to influence 

the execution of the management domain. Depending on the vulnerability and the design of the backend 

the impact of such vulnerabilities can range from information leaks over denial of service to a complete 

compromise of the management domain. As our discussion in Chapter 2.5 demonstrates, full access to the 

management domain is practically equivalent to a full compromise of the hypervisor. Due to their low-level 

nature, backend drivers are generally implemented in C or C++ making them prime targets for classic 
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vulnerabilities like buffer overflows, out-of-bounds accesses and integer overflows. Examples for such 

vulnerabilities in backend drivers are CVE-2011-1750 [11], a heap-based buffer overflow in the disk 

backend driver of KVM and CVE-2015- 2361 [12], a unspecified buffer overflow in the Hyper-V storage 

backend. Because the communication between the two components needs to be as fast as possible, 

shared memory regions are used for data transfers. This means that in addition to the classic issues 

highlighted above, bug classes that are specific to shared memory communication such as double fetches, 

which were introduced in Section 2.2, have to be kept in mind. However, no such vulnerabilities in 

paravirtualized devices were published until now, which leads to the impression that the underlying inter-

domain interfaces were not heavily audited for this type of vulnerability before. 

In summary, inter-domain communication opens a significant attack surface in virtualized environments. 

From an attacker’s point of view, the backend driver is not too different from a remote network daemon 

with the added risk of using shared memory as communication medium. The next section discusses 

different approaches that can be used to discover vulnerabilities in these interfaces, as well as their 

advantages and disadvantages. The lack of any public research about double fetch vulnerabilities in inter-

domain communication makes them a focus of our thesis. 

3.2 Approaches to Vulnerability Discovery 

The standard approaches for discovering security vulnerabilities such as manual source code review, 

static analysis and fuzzing are also applicable to inter-domain communication. In this section the three 

most popular techniques are evaluated and an alternative approach based on memory access tracing and 

pattern analysis is presented. Besides evaluating their general advantages and limitations, their suitability 

to discover double fetch vulnerabilities is a main decision criterion. 

3.2.1 Source Code Review 

The classic approach for finding vulnerabilities in software is manual source code review. While a skilled 

auditor can often discover vulnerabilities that are very hard to identify using other techniques, a 

completely manual approach suffers from several downsides: In-depth source code review is a very time-

consuming and slow process. This makes it almost impossible to get full coverage of a large application 

without a significant resource investment. In addition, software as complex as a virtualization solution 

includes many different components of which only some have a relevant attack surface. Without an 

advanced understanding of the overall architecture, even identifying these relevant components can be a 
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difficult process. For example, backend drivers in Xen can be implemented as Linux kernel modules, as 

QEMU extensions or as independent user-space applications. 

Certain types of vulnerabilities are very hard to detect using source code analysis. Wang et al. [47] 

demonstrate multiple examples of so called unstable code that incorrectly depends on undefined behavior 

of the C language. Because the compiler has a high amount of freedom in the presence of undefined 

behavior, seemingly valid security checks can disappear depending on the optimization level used. Without 

a full understanding of the C language reference, such issues will be missed by most security reviewers. 

As described in Section 2.2, double fetch vulnerabilities can be introduced by compiler optimization hiding 

them from an auditor doing pure source code based analysis. Finally, source code might not even be 

available to a security researcher. Proprietary applications like Hyper-V are only available in binary form, 

making source code review impossible in practice. While a manual security review of the compiled 

application is possible in theory, the difficulty and time requirements rise significantly in comparison to a 

source code review. 

Keeping these downsides in mind, manual source review is not an ideal first step to identify vulnerabilities 

in inter-domain communication. The large amount of involved components makes it hard to identify the 

relevant attack surface manually and some interesting vulnerability types, such as the ones described in 

[47], are very hard to detect on a source code level. In particular, source code review does not seem to be 

sufficient to detect double fetch vulnerabilities introduced by compiler optimizations. Still, code review is 

often needed to gain a better understanding of a vulnerability or to discover more complex vulnerabilities 

that cannot be triggered by other approaches. The identification of interesting attack surfaces by 

automated means followed by a complementary source code review seems to be a good approach. The two 

most prevalent automated techniques are fuzzing and static analysis, which are presented in the next 

sections. 

3.2.2 Static Analysis 

An alternative to manual code review is the use of static analysis algorithms. In Principles of Program 

Analysis, the authors characterize program analysis as "static [..] techniques for predicting safe and 

computable approximations to the set of values or behaviors arising [..] at run-time" [31]. While mainly 

used by compilers for performing safe optimizations of source code, the same techniques can also be used 

to discover security vulnerabilities. In theory, static analysis can be performed on either source code or the 

compiled binary. In practice, the information loss involved in the compilation process and the complexity of 

binary code makes it hard to perform analysis on large binaries without additional information sources like 
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debugging symbols [40]. Even if source code is available, static analysis of virtualization related code is 

difficult in comparison to high-level user space applications: For example, even parsing the source code of 

relevant functions, which is a prerequisite for any further analysis, is difficult due to the heavy use of 

compiler specific extensions or inline assembly [5]. 

In comparison to a dynamic approach, static analysis can get a much higher code coverage. Because no 

execution is required, code paths that only trigger under rare circumstances can still be covered. 

However, even ignoring classic problems such as the state explosion issues [31], this complete coverage is 

only possible when all involved components are identified correctly. If the user of the static analysis tool 

does not know that a certain user space application is part of the attack surface, it will not be analyzed 

leading to potential false negatives. When using source code based static analysis, vulnerabilities that are 

introduced by compiler optimizations can also not be discovered. 

There are a number of examples for sophisticated and security oriented static analysis tools targeting C 

software [5, 38]. However, they are either commercial products that are not freely available [5], do not 

have any available implementation [38] or are not well suited for large software stacks such as hypervisors 

[9]. In addition, these solutions generally operate on source code, making them unusable for analysis of 

proprietary software. The development of a static analysis framework specialized for this thesis would 

require a significant implementation effort. Furthermore, such a tool needs a correct model of the 

language semantics, which is non-trivial for high level C code and much more difficult when low level 

implementation details like Intel VT are involved. 

In summary, static analysis requires correct identification of the involved components and significant 

implementation effort. Source code based static analysis is not usable for proprietary target systems and 

can miss vulnerabilities created by compiler optimizations such as double fetches. On the other hand, 

binary static analysis is still an open research area without significant results for system security. For 

these reasons, static analysis is not the best approach for this thesis, which makes investigating 

techniques based on dynamic analysis a logical next step. 

3.2.3 Fuzzing 

Fuzzing can be defined as a 

"highly automated testing technique that covers numerous boundary cases using invalid data (from files, 

network protocols, API calls, and other targets) as application input to better ensure the absence of 

exploitable vulnerabilities"[32]. 
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The relative simplicity of fuzz testing, the availability of powerful fuzzing tools like sulley [42] or the more 

recent American fuzzy lop(AFL) [2] and their surprising efficiency in discovering software vulnerabilities 

make fuzzing by far the most popular automated vulnerability discovery technique. Fuzzers targeting 

webbrowsers, javascript engines and multi-media files are responsible for a majority of publicly dis- 

closed bugs in these types of software. Fuzzing is nowadays considered an important part of the software 

development cycle by vendors such as Microsoft [2, 16]. 

Fuzzers can be separated into two main categories: Black-box fuzzers are not interested in the inner-

working of their target and just feed input until it misbehaves or crashes. In contrast, white-box fuzzer try 

to optimize their coverage of the tested application using various techniques. SAGE [16], a white-box fuzzer 

developed by Microsoft, uses symbolic execution based on a SMT solver to generate input that triggers as 

many code paths as possible. Besides the differentiation between black and white-box testing, the method 

used to generate inputs categorizes fuzzer. Generative fuzzer generate samples based on a specification 

[32] that describes the structure of valid inputs in a parsable way. The alternative is mutation based 

fuzzing that works by manipulating a known set of good sample inputs. Both approaches have their 

advantages, but the lower implementation effort leads to a higher prevalence of mutation based fuzzing. 

Recently, AFL has shown the high success rate of fuzzing by combining mutation based fuzzing guided by 

detailed code coverage and has discovered a high number of critical vulnerabilities in a wide range of 

popular software [2]. 

These results make it seem like fuzzing is well suited to the problem of discovering vulnerabilities in inter-

domain communication. However, there are several important downsides: 

 Stateful interfaces. The communication between frontend and backend drivers often requires 

correct initialization and notifications to occur. Without a full understanding of these 

requirements, a fuzzer will not be able to generate requests that are considered valid. While this 

problem can be bypassed by making sure the fuzzer behaves like a valid frontend driver, this 

requires development time for each analyzed interface. 

 Fragility. The targeted paravirtualized drivers play a critical role in the stability of the virtual 

machine [26]. Simply sending invalid data to the backend will lead to an invalid state and crash 

the virtual machine almost immediately. Even worse, if such an invalid state involves the 

corruption of persistent data, for example when fuzzing a virtualized hard disk, a simple reboot is 

not sufficient to get back to a valid state. This means that some mechanism for fast restoration of 

a VM state is a requirement. 
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 Unsuitable for certain vulnerability types. Fuzzer are not the best tool to find race condition 

vulnerabilities such as double fetches, which were introduced in Section 2.2. To discover such an 

issue, the fuzzer has to generate multiple suitable requests in a very constrained time-frame and 

actually trigger the race condition. For short races, this is pretty much impossible. 

In summary, fuzzing is a promising approach to vulnerability discovery, but does not seem to be well suited 

to our objective.  

3.2.4 Memory Access Tracing and Pattern Analysis 

Memory access tracing is widely used for development, debugging and performance evaluations [34]. In 

addition, full system traces including memory accesses as well as executed instructions can be used to 

identify and analyze malicious software or exploits [13]. Memory access tracing as a technique to discover 

vulnerabilities was first presented in [20]. As discussed in Section 2.2, the authors use the Bochs CPU 

emulator to generate traces of all virtual memory addresses accessed by a running virtual machine. They 

analyze these traces to identify potential double fetch vulnerabilities. As the authors mention, this 

approach can be generalized to identify other types of vulnerabilities by performing different analysis 

algorithms on the collected data. A related but not identical approach is the use of execution traces to aid 

in vulnerability discovery, using dynamic taint analysis or concolic execution as described in [36]. 

We define Memory Access Tracing and Pattern Analysis as a two-step technique for discovering 

vulnerabilities: First, a detailed memory trace is collected during execution of the target application or 

system. This trace is then processed by one or more analysis algorithms to discover potential 

vulnerabilities, privileged code working with attacker controlled data or other information that can indicate 

the existence of a vulnerability. The types of data stored in a memory trace depends on the requirements 

of the analysis algorithm and limitations introduced by the tracing approach. A useful separation can be 

created by discerning between algorithms that require access to the actual memory content and those 

that only need meta data like the accessed address and the accessing instruction. The simplest example 

for the second type of analysis is an algorithm that extracts all privileged instructions accessing attacker 

influenced memory address and uses this information to identify the overall attack surface of a complex 

environment. On the other hand, a trace that contains memory contents could be used to identify address 

leaks from a privileged to an unprivileged context or the direct use of user controlled pointers. Of course 

only a small subset of potential vulnerabilities can be directly identified by using pattern analysis. 

However, the other discussed approaches can profit from insights generated, making the approach more 

generally useful. 
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We consider memory access tracing as a suitable approach for this thesis due to two main reasons: A 

limited implementation effort and the effectiveness in discovering double fetch vulnerabilities. In 

comparison to the development of a full static analyzer for hypervisor communication, a memory tracing 

and analysis toolset only requires a moderate implementation effort. Additionally, double fetch 

vulnerabilities are very well suited for discovery by memory access tracing as demonstrated by [20]. A 

potential double fetch vulnerability can be detected by searching the trace log for at least two memory 

fetches from the same address in a single context. In comparison, the other vulnerability discovery 

techniques presented above are less suitable for this vulnerability type: Manual source code analysis does 

not discover double fetches introduced by compiler optimization, which is also the case for source code 

based static analysis. As already discussed, fuzzing is not a reliable way to discover race conditions which 

only leaves static analysis of binary code as a sufficient alternative. 

However, statically identifying all references to shared memory regions is non-trivial, making memory 

access tracing a simpler alternative. 

In summary, memory access tracing followed by pattern analysis is the most practical approach for 

discovering double fetch vulnerabilities in the course of this thesis. Still, the goal to trace hypervisor 

communication adds a number of requirements that need to be kept in mind. The next sections discuss 

these requirements in depth. 

3.3 Requirements for Memory Access Tracing 

In general there are plenty of methods we could use to generate memory traces. How- ever, the use case 

of analyzing inter-domain communication has special requirements that limit the set of suitable 

approaches, as discussed in the following: 

 Low-level Communication. A fundamental requirement to use memory access tracing for our 

purpose is the ability to collect low level communication. Inter-domain communication can 

involve kernel modules and user space applications in all participating domains. Furthermore, 

depending on the exact implementation even hypervisor code running in root mode might operate 

on the exchanged data. This makes approaches like METRIC [24] or PIN tools [23] that are 

restricted to user space tracing unsuitable. 

 Versatility. The chosen approach should be usable to analyze different hypervisors. This discards 

all approaches that require significant patches or modifications to the target software. In 
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particular, the existence of source for the target hypervisor should not be a requirement to allow 

for the analysis of software such as Hyper-V or VMWare ESXi. 

 Scalability and Performance. While most hypervisors can be configured in a very minimal 

configuration, the goal to find vulnerabilities with dynamic analysis requires us to execute as 

much of the existing functionality as possible. This requires that the system can continue to 

execute with a manageable performance overhead, even when tracing is performed. In addition, 

tracing should not be limited to short time-frames or small data amounts to identify 

vulnerabilities in time and memory intensive functionality. In general, we consider every approach 

that prevents normal interactive use of the system as unfit. 

 Configurable. For our use case, only a very small subset of memory accesses is interesting. Every 

access that does not operate on a shared memory region can be safely ignored. Approaches that 

allow to only trace accesses to a number of configured memory traces are therefore preferable 

to an approach that forces indiscriminate processing of all memory accesses 

As discussed in the last section, the data collected during memory traces varies based on the 

requirements of the later analysis step. However certain data is required for almost all useful analyses. In 

the following, we list the mandatory data points that need to be collected for each memory access: 

 Address. The accessed physical memory address. Because different virtual ma- chines will 

access the same memory address using different virtual addresses, storing the physical address 

is required for correlation. 

 Type. The type of access: read, write or execute. 

 Instruction data. The instruction triggering the memory access. Full access to the instruction 

bytes is preferable to the storage of only the instruction address, because it allows a complete 

offline analysis without access to the system memory or binaries. 

 Size. On x64 memory can accessed with different byte granularity. To correctly identify 

overlapping accesses and the accessed data we need to store this information in the trace. 

 Context. Information that describe which virtual machine and which component is responsible for 

the access. This can be a VM name and a process identifier or lower level information such as the 

address of the page directory. 

 

In addition to these required information, approaches that allow the collection of the transferred data are 

especially interesting. While not required to discover double fetch bugs, several other vulnerability types 
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can be detected when memory data is available. If the chosen approach is able to collect this data, an 

extension of the developed tool to include such algorithms is feasible for the future. 

3.4 Conclusion 

This chapter evaluated different approaches to discover vulnerabilities in shared memory interfaces in the 

context of inter-domain communication. Based upon the discussion of hypervisor architectures presented 

in the last chapter, the suitability of different analysis methods were compared. Besides having a realistic 

implementation effort, a main decision criteria was the ability to discover double fetch vulnerabilities, 

which were introduced in Section 2.2. For this reasons, memory accessing tracing followed by pattern 

analysis was chosen as the approach used for this thesis. Following this decision, the requirements for 

memory access tracing of inter-domain communication were enumerated. This leads up to the next 

chapter, where the overall design of our proposed solution is introduced. 
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4. Design 

 

Based on the analysis performed in Chapter 3 we consider memory access tracing the most promising 

approach for discovering vulnerabilities in inter-domain communication. In this chapter the proposed 

design of our toolkit for performing memory access tracing and vulnerability analysis on these 

communication interfaces is presented. A particular emphasis is laid on the efficient discovery of double 

fetch vulnerabilities. 

In the next Section, two analysis algorithms that operate on memory access traces are highlighted. Based 

upon their requirements and the general requirements for tracing inter-domain communication presented 

in Section 3.3, different approaches to full system memory tracing will be compared. This is followed by a 

description of the proposed design of our memory tracing toolkit and an introduction into the different 

components involved. The chapter finishes with a walkthrough of the tracing, storage and analysis of a 

single memory access. 

4.1 Analysis Algorithms 

Analysis algorithms operate on a collected memory trace. They should not require access to the running 

target system, which makes it possible to perform the analysis even after the target system is shut down 

or reconfigured. The algorithms work by iterating over the collected memory access traces and searching 

for interesting patterns. When needed, additional data like instruction bytes can be passed as input to 

supplement the analysis. The final output of an analysis algorithm is a human readable representation of 

results or a machine readable output suitable for processing by other tools. 

To validate the approach chosen for this thesis, we propose two analysis algorithms: attack surface and 

double fetch. The attack surface algorithm simply iterates through all logged read accesses and maps 

them to the responsible process or kernel module. The double fetch algorithm tries to identify double 

fetch vulnerabilities in privileged components. The design of both algorithms is highlighted below. 

4.1.1 Attack Surface 

The core idea of this analysis is very simple. By identifying all code segments that operate on shared 

memory regions, the attack surface can be mapped. For the purpose of this thesis, we define attack 
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surface as all code that operates on attacker controlled input. One of the main insights of the vulnerability 

discovery discussion in Section 3.2 was the problem of identifying all privileged components that are 

involved during execution of a virtualized system. While not all of these components will directly operate 

on shared memory, every component that does is an interesting target for further analysis. 

On its own the output of the attack surface analysis does not indicate the existence of vulnerabilities, but it 

can support other analysis steps such as manual source code analysis. In addition, the results can be used 

to compare different tracing runs and their code coverage, indicating ways to trigger as much backend 

code as possible. 
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4.1.2 Double Fetches 

The double fetch algorithm works similar to the one presented in [20]: Two or more read accesses to the 

same memory address, that are performed in a single privileged execution context can indicate the 

existence of a double fetch vulnerability. While this approach sounds simple, there are a two potential 

issues that must be addressed: Overlapping reads and the definition of an execution context. Overlapping 

reads can happen due to the different memory access sizes supported by the x64 architecture. A 4-byte 

read from the address 0x1008 and a 8-byte read from the address 0x1004 would both access the bytes at 

0x1008 to 0x100C. This means that both the accessed address and the access size needs to be known to 

perform the double fetch analysis. Otherwise, potential double fetches could be missed when only 

matching addresses are taken into account, introducing false negatives.  

 

Figure 4-1. Double fetch: False positive. 

A second difficulty is the definition of a single execution context. When backend and frontend drivers reuse 

the same shared memory pages for more than one request, multiple accesses to the same address will 

happen sooner or later. However, they do not necessarily indicate a double fetch vulnerability and instead 

can happen when multiple frontend requests are handled by the same backend function. Figure 4.1 shows 

an example for such behavior. The two read accesses to the shared memory address 0x10 are triggered by 

two unique requests and do not have anything to do with each other, but they still access the same 

memory address triggering a false positive by a naive approach. 
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The proposed algorithm only considers multiple read accesses when no memory accesses by the 

unprivileged domain happen in between. This is related to the methodology used by Bochspwn, where only 

reads that occur during the handling of a single system call are correlated [20]. The described approach 

removes the mentioned false positives but can theoretically introduce false negatives. An example for this 

is shown in Figure 4.2: When scheduling stops the execution of the privileged domain right between two 

read accesses, the unprivileged domain starts to run and performs some kind of unrelated operation on 

the shared memory page. Because the two read accesses to 0x10 do not seem to happen in a single 

execution context, they would be missed. However, chances for this behavior are quite low. The risk of 

false negatives becomes acceptable when keeping in mind that the described scheduling must happen 

every time a vulnerable function is executed. Because tracing is done over longer periods of time, most 

relevant functions will be triggered multiple times. 

 

Figure 4-2. Double fetch: False negative. 

Not every discovered double fetch can be assumed to indicate a vulnerability. For example, a function 

could be repeatedly checking for a mutex, fetch a non-security critical value multiple times or perform 

sufficient validation after every fetch. This means manual analysis is still required. To facilitate this, the 

double fetch analysis should print all instructions accessing a memory address, as well as the involved 

module or process names. 
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4.2 Approaches for Full System Memory Tracing 

The requirement to be able to analyze low level communication, as discussed in Section 3.3, limits the 

number of approaches suited to our objective. We need the ability to trace memory accesses on all 

software layers running on the system. Because modification to the target software were ruled out due to 

the goal of supporting multiple targets, performing some kind of system virtualization is the only way to 

intercept all memory accesses. In the following three, virtualization approaches are compared: The Bochs 

x86 CPU emulator used in [20], QEMU used by [13] and similar tools and a hypervisor based on hardware-

assisted virtualization. 

4.2.1 Bochs 

Bochs [25] is a highly portable x86 emulator entirely implemented in software. While most other 

emulators focus on offering the best performance possible, Bochs’ main goal is portability. To support 

running on as many host architectures as possible, it does not use any advanced hardware features or 

dynamic recompilation and instead relies on a pure emulation based approach. This makes it possible to 

run Bochs even on embedded devices with a low amount of available memory. 

The Bochs developer take great care to make the emulation as exact as possible, allowing the execution of 

many different operating systems, including Windows 8 in 32- and 64bit versions. In particular the CPU 

emulated by Bochs includes hardware virtualization features as discussed in Section 2.3. This means 

hypervisors such as Hyper-V or Xen can be executed inside a Bochs VM making it a possible target 

platform for our research. 

Bochs offer a feature rich instrumentation API, which is used by [20] to trace memory accesses. The 

biggest downside of Bochs is its slow performance in comparison to other approaches. The memory 

access instrumentation added in [20] further slows down the emulation by a factor of 5. A main reason for 

this overhead is the fact that every single memory access has to be analyzed by the add-on, because the 

instrumentation API does not allow the targeted interception of a small sub set of memory accesses. 

 

Table 4-1. Tracing requirements: Bochs 
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Table 4.1 summarizes the advantages and disadvantages of Bochs. Thanks to full system emulation and 

the capability to emulate Intel VT instructions, Bochs fulfills the first two requirements: Low-level 

communication can be traced and Bochs supports the emulation of all relevant hypervisors. The slow 

performance in general and the missing capability of targeted memory interception means the 

requirements for Performance and Configurability are not satisfied. Still, Bochs seems to be a valid choice 

if the low performance can be accepted. 

4.2.2 QEMU 

QEMU is a fast system emulator with support for multiple architectures including x86, ARM and MIPS as 

emulation targets and host platforms [4]. When emulating x64 code on a x64 host, QEMU can operate in 

two modes: Software emulation using a dynamic binary translator called Tiny Code Generator (TCG) or by 

using hardware-assisted virtualization with the help of the KVM [22] hypervisor. 

TCG operates by dynamically translating blocks of instructions. Privileged instructions are rewritten to 

safe alternatives as discussed in Section 2.3.1: Privileged instructions are translated into a number of 

unprivileged ones that operate on the virtual machine state. Because this translation process happens in 

software, it is possible to add arbitrary instrumentation code that gets executed whenever certain types of 

instructions are executed. This can be used for memory tracing [34] or execution traces [13] and makes 

QEMU in TCG mode a popular implementation target for these kind of software. A downside inherent to 

TCG, is a lower speed in comparison to native or hardware-assisted virtualization. Even though, TCG is 

much faster than Bochs it still adds a significant overhead. This overhead gets noticeably larger when 

tracing instrumentation is added as documented in [35] and [13] While the instrumentation capabilities of 

QEMU are very powerful, they adds a general overhead to each instrumented instruction. For example, an 

instrumentation of memory accesses cannot simply be disabled or enabled for specific memory addresses 

but will be triggered for every memory access. Of course, this overhead can be partially reduced by 

keeping the added instrumentation as fast as possible, but this is not trivial. 

More importantly, TCG is not suitable for the use case of this thesis due to missing support for modern 

CPU features: Because of the rising prevalence of hardware virtualization, most of the current 

development effort for the x64 platform is concentrating on QEMU in combination with KVM. This means 

that emulation support for modern CPU features is limited in TCG. Initial experiments showed that 

QEMU/TCG was not able to install a 64bit version of Windows Server 2012, required as a base system for 

the Hyper-V hypervisor, and that a Xen hypervisor running as a TCG guest did crash when starting level 2 

guests. These first results triggered the decision to not rely on QEMU for this thesis. However, it is 
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important to note that compatibility improvements are regularly added to TCG, making it potentially more 

suitable in future versions.  

 

Table 4-2. Tracing requirements: QEMU 

Table 4.2, shows the summarized advantages and disadvantages of QEMU in TCG mode: Whole system 

emulation and the possibility to add instrumentation code makes it possible to trace low level 

communication. In addition, the offered performance is sufficient for the described use case. Still, missing 

support for modern CPU features restricts the systems that can be emulated using TCG and the 

instrumentation code is executed for each memory access adding a general overhead that can only be 

partially mitigated. 

4.2.3 Hardware-Assisted Virtualization 

The final virtualization approach that could be used for this thesis is hardware- assisted virtualization. The 

core concepts of hardware-assisted virtualization were introduced in Section 2.3: Processors supporting 

Intel VT add the possibility to run virtual machines natively on the hardware in a special operation mode 

called non- root mode. All unprivileged instructions execute at full speed, whereas privileged operations 

trigger a VM exit, which can be handled by the hypervisor. 

Because only certain privileged instructions trigger a VM exit, hardware-assisted virtualization does not 

offer as much instrumentation possibilities as the previous two approaches out of the box. Still, memory 

access tracing is possible using Extended Page Tables (EPT): As described in Section 2.3.3, EPT adds a 

second layer used during address translation. By restricting the permissions of specific memory pages 

using EPT entries, each memory access to these pages triggers an EPT violation and a VM exit. The VM exit 

is handled by the hypervisor which can log it, revert the page permissions for a single instruction and 

continue execution. 

In comparison to the other proposed approaches, this has one important advantage: Memory interception 

can be enabled and disabled dynamically on a page granularity. This means that all normal system 
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operation can execute natively and only instructions operating on traced memory regions suffer from an 

overhead due to the EPT violation and corresponding VM exit. While this overhead is quite significant, it 

only occurs when an application uses the shared memory region. No large passive overhead is introduced. 

This EPT based approach is also suitable for a lot of diverse shared memory interfaces in different types of 

software. The only requirement is the possibility to extract information about the shared memory pages 

using virtual machine introspection or a software agent running inside the VM. 

 

Table 4-3. Tracing requirements: Hardware-assisted Virtualization 

Still, the use case of tracing inter-domain communication between virtual machines requires support for 

nested virtualization. The idea of nested virtualization, running a hypervisor inside another one, was 

presented in Section 2.3.4. Because several major hypervisors include support for nested virtualization, 

hardware-assisted virtualization fulfills all our proposed requirements as shown in Table 4.3 

4.2.4 Comparison 

As Table 4.4 shows, memory tracing based on hardware-assisted virtualization is the only approach that 

fulfills all our requirements. In particular, it allows for configurable tracing, which adds overhead only to 

accesses to the traced memory accesses while not significantly slowing the rest of the system down. For 

these reasons, hardware-assisted virtualization was chosen as the approach for this thesis. 

 

Table 4-4. Tracing requirements: Comparison 
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4.3 Proposed Architecture 

Figure 4.3 gives a high level overview about the proposed architecture. All involved components are 

running on top of the level 0 (L0) hypervisor. The hypervisor runs two virtual machines: A privileged 

management domain called dom0 and a unprivileged domain running a nested hypervisor called L1. The 

L1 hypervisor is our target system. Because we want to analyze inter-domain communication, the level 1 

hypervisor needs to host at least two L2 virtual machines: An unprivileged domU running frontend drivers 

for paravirtualized devices and a privileged dom0 running the corresponding backend drivers. The shared 

memory communication between these drivers can be seen in Figure 4.3 and is the one that needs to be 

traced and analyzed by our toolkit. The L1 dom0 hosts all self-developed parts of our toolkit. The trace 

collector is the core component of the proposed design. It needs to interact with the virtual machine 

introspection (VMI) library to extract information about shared memory ranges from the L1 hypervisor and 

to enable and disable memory intercepts using EPT permissions of the L0 hypervisor. 

 

Figure 4-3. Proposed architecture 

When an EPT violation is triggered, the trace collector is notified. It extracts all needed access information 

and stores them into the trace storage. After tracing is finished, the analysis client can operate on the 

storage to identify potential malicious traces. In theory, the analysis client does not require access to the 
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VMI component, allowing for a complete offline analysis when the trace stores all needed information. 

Intercepted EPT violations are completely hidden from the L1 hypervisor. The virtual machine is paused 

while a memory access is traced. Due to the low overhead of hardware-assisted virtualization, even for 

nested environments, all operations that do not involve the traced memory regions can operate at almost 

native speed. However, traced memory accesses are very expensive in comparison because they will 

trigger a complete VM exit and multiple context switches. This means the presented architecture is only 

feasible when the percentage of shared memory accesses is a small part of the overall system activity. Of 

course, this is the case for inter-domain communication but it makes this approach less fit for tracing all 

memory accesses of a single process or even of the whole system. 

An important detail of the architecture is the fact that the level 1 hypervisor only has a single (virtual) CPU. 

This might seem surprising due to the fact that Section 2.2 considers multiple cores as a requirement for 

reliable double fetch exploitation. However, simply identifying these vulnerabilities does not require a 

multi core system and by restricting the analysis target to a single core the implementation effort is 

significantly reduced. Otherwise, EPT permissions and access tracing would need to be managed on a per 

CPU basis while keeping the possibility of rescheduling to different CPU cores in mind. 

In the following sections, the requirements for the different involved components will be discussed in 

more detail. 

4.3.1 Hypervisor 

For reasons described in Section 4.2, we choose to implement our toolkit on top of an Intel VT based 

hypervisor. As discussed in the last section, the hypervisor needs to be able to virtualize a second 

hypervisor, a concept called nested virtualization, as described in Section 2.3.4. Nested virtualization is not 

in widespread production use and is not supported by all major hypervisors. 

The ability to run the L1 hypervisor is not sufficient for our use case, the proposed design requires at least 

two hypervisor APIs usable by the VMI library: Read access to the memory space and CPU state of the L1 

hypervisor, and a way to manipulate its EPT permissions. Furthermore, EPT violations triggered by our 

modifications should be passed to VMI layer so they can be analyzed and logged by the trace collector. 

When these APIs are available, no direct modifications to the hypervisor are required. This indicates that 

even a proprietary hypervisor might be usable in the proposed architecture, as long as nested 

virtualization is supported and sufficient APIs are available. 
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4.3.2 Virtual Machine Introspection 

The concept of VMI was introduced in Section 2.4. When looking at the requirements of the proposed 

analysis algorithms and the overall architecture, the requirements for the used VMI library are quite 

limited: 

 Memory Access. Read access to the VM memory is required to extract information about the 

memory pages used for inter-domain communication. Depending on the exact architecture of the 

target system, the easiest way to find this data might differ but it generally involves identifying 

and traversing data structures kept in the memory space of the L1 hypervisor or the involved L2 

guests. Furthermore, our proposed algorithms profit from access to the instruction bytes 

because it allows better insight into which operation triggered the EPT violation. While non the 

proposed algorithms require memory access traces that include the written content, such a 

feature would also be implemented ontop of this functionality when needed. 

 CPU State. Read access to the CPU state at the point of the EPT violation. Most 

 relevant is the address of the page table hierarchy base address, which specifies the used page 

tables, and the current instruction pointer that will point to the instruction accessing the shared 

memory pages. 

 Address Translation. As documented in Section 2.3.3, EPT violations are based on guest physical 

addresses. This means that translation between virtual addresses and physical addresses needs 

to be performed during trace collection and initialization. 

 Breakpoints. Breaking on target specific management functions allows an efficient handling of 

newly added or removed shared memory pages. While, breakpoints can be implemented directly 

using EPT permissions, direct support by the VMI library is preferable. 

  

 All other required features can be implemented on top of these features and the aforementioned 

hypervisor API for manipulating EPT permissions and handling violations. For example, the 

memory access size, which is needed by the proposed double fetch algorithm, can be extracted 

out of the disassembled instruction bytes. On the other hand, the name or id of the domain 

responsible for the memory access can be learned by extracting it out of hypervisor specific data 

structures stored in memory. While a standalone hypervisor API for manipulation of EPT 

permissions would be sufficient, a VMI library that already includes EPT events is more 

convenient because it reduces the coupling to a certain hypervisor version and simplifies the 

implementation effort. 
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4.3.3 Trace Collector 

The trace collector is the core component of the proposed architecture. It is running as a standard user 

space process in the management domain of the L0 hypervisor. The collector uses the VMI library to 

extract information about the shared memory pages out of the L1 hypervisor guests and subsequently 

removes read and write permissions from these pages using the VMI library or a direct API offered by the 

hypervisor. When an EPT violation is triggered, the trace collector is responsible for extracting all required 

state information out of the target VM and storing this data in the trace storage. While the trace collection 

functionality could be completely implemented in the hypervisor itself, but this would increase the 

implementation effort significantly because bugs would directly lead to a crash of the L0 hypervisor. In 

addition, user space libraries cannot be directly used from the hypervisor context. By using an API from 

the privileged dom0, all needed functionality can instead be implemented as standard user space utilities. 

The trace collector is designed to be as general as possible. The only target specific component that is 

required by the trace collector is the code that is responsible for identifying the physical addresses of 

shared memory pages. As we will discuss in the next chapter, the difficulty of this step differs strongly 

depending on the target architecture. A related functionality is the detection algorithm to decide if a 

memory access was performed by the privileged level 2 domain or by the unprivileged one. Because only 

vulnerabilities in the backend driver are a relevant security risk, only memory accesses performed by the 

backend should be analyzed. This means that some mechanism needs to identify which level 2 VM 

performed a memory access by analyzing the state of the virtual CPU at the time of the EPT violation. 

Because most VMI libraries were not developed with the use case of nested virtualization in mind and 

hypervisors don’t expose the state of the simulated VT environment as an API, this is not trivial and 

requires target specific code. The information which domain performed a memory access, can either be 

stored inside the memory trace or all memory accesses by unprivileged domains are simply dropped. 

The final task of the trace collector is the relaunch of the instruction that triggered the EPT violation. 

Simply restarting it without relaxing the EPT permissions would result in an endless loop of violations, so 

single stepping can be used to enable access to the memory address for only a single instruction. This 

ensures no accesses are missed. 
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4.3.4 Trace Storage 

In Bochspwn [20] all traced accesses are stored in a text file for later analysis. However, the authors note 

that this simple manner requires large amount of disk space and is limited by the IO performance of the 

disk backend. In order to minimize the additional overhead introduced by storage, a partially memory 

backed storage seems preferable. Additional actions like compression and persistent storage should be 

performed independently and in a different thread than the actual trace entry, so the trace collector can 

resume the virtual machine as fast as possible, without waiting for these post processing steps to finish. 

The tracing storage is the only component to be used by the analysis algorithms. This means it has to store 

all data required by the algorithms and it should offer a easy to consume library to iterate through trace 

entries. Furthermore, support to store different data types should be available. In addition to normal trace 

entries, information about the responsible instruction has to be stored. Storing this information inside the 

actual trace entries is not optimal, because a single instruction potentially triggers a large number of 

memory access making this approach inefficient. 

An advantage of the proposed architecture is the low coupling of the different components. In particular, 

the analysis clients only operate with the tracing storage making them completely independent from the 

trace collector and the VMI interface. 

As long as the trace storage offers a standardized API, other methods for memory access tracing can be 

used with the analysis clients. 
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4.4 Walkthrough 

 This section describes an exemplary tracing session with the proposed design, starting with the initial 

page table parsing over the interception of EPT violations to the final analysis. 

1. The target L1 hypervisor is started, which in turn starts execution of the L2 management domain 

(dom0). The L2 domU is still stopped and no inter-domain communication can occur. 

2. The trace collector is started and uses the VMI interface to identify memory pages that are shared 

between the L2 dom0 and other partitions. Because no guest domains are running this will not 

return any results. The trace collector sets breakpoints in the target hypervisor to get notified 

when new shared pages are configured. 

3. The L2 domU is started. When the operating system boots, para-virtualized devices are initialized. 

This triggers initial handshakes between domU and dom0 and the configuration of shared 

memory pages. 

4. The breakpoints registered in step 2 are triggered and the trace collector extracts the (L1) 

physical addresses of the shared pages. It removes read and write access from these pages to 

trigger an EPT violation whenever they are used. 

5. System activity in the L2 domU triggers the use of the para-virtualized device. Depending on the 

device type this might happen automatically or manually, for example by triggering a network 

connection. 

6. The frontend driver in domU and the backend driver in dom0 try to exchange data via shared 

memory. When the virtual CPU tries to access one of the memory pages an EPT violation is raised 

and control is transferred to the L0 hypervisor. The L1 hypervisor and all its virtual machines are 

stopped. 

7. The L0 hypervisor notifies the trace collector of the EPT violation. The trace collector uses the 

VMI library to extract all required information out of the paused VM and stores a trace entry in the 

tracing storage. 

8. By relaxing the EPT permissions, single-stepping over the triggering instruction and removing 

the permission again, the trace collector makes sure the target system is not triggering the same 

EPT violation over and over again. Instead execution can continue normally with the next 

instruction until the next memory access occurs. 

9. Steps 5. till 8. repeat until the target system shuts down or the trace collector is closed manually. 

Step 4 is triggered whenever a new shared memory page is configured. 
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10. In the final step an analysis algorithm is started to iterate over the trace storage. The output can 

be used for manual analysis or as an input into other tools. 

An important advantage of this design is that step 10 can be executed at any time after tracing was 

finished. As long as the trace storage is not deleted, improvements in the analysis algorithms can be 

directly tested on already collected data. 

4.5 Limitations 

There are several limitations that need to be kept in mind when comparing the presented approach to 

different designs and when evaluating the discovered potential vulnerabilities. These limitations and their 

impact on the analysis results are discussed in the following. 

 Tracing overhead. Every access to a monitored memory region triggers at least 2 VM exits, page 

table modifications, and multiple context switches. The overhead for active tracing is therefore 

quite large. However, in comparison to regular system activity, inter-domain communication 

occurs only rarely. Due to that, a high overhead for active tracing is preferable in contrast to a 

lower permanent overhead introduced by other approaches like software emulation. This makes 

sense for the presented use case, but might not be the right choice for analyzing shared memory 

interfaces with a high number of accesses. For example, analyzing kernel-user space 

communication can be ruled out due to the extremely high number of memory pages involved and 

the fast rate of context switches. 

 Single core virtualization. Introducing support for more than one core in the target system would 

significantly increase the implementation effort as high- lighted in Section 4.3. In theory, this can 

lead to problems when vulnerable code is only executed on multi core systems. For example, a 

frontend driver could optimize for the number of available cores by choosing a different 

communication method. Still, we consider the risk for missing vulnerabilities due to this behavior 

to be acceptable in comparison to the greater implementation effort needed for supporting 

multiple cores. 

 Target coverage. Dynamic analysis in general is limited to the code that is actually executed by 

the target system. If a certain functionality is not used during tracing, no vulnerabilities in it will 

be discovered. Code coverage can be improved by triggering as much system activity as possible 

during tracing. However, this is not a bullet proof approach, because some code might only be 

triggered in special configurations or under unlikely circumstances 

https://www.ernw.de/
https://www.troopers.de/
https://www.insinuator.net/


 

ERNW Enno Rey Netzwerke GmbH www.ernw.de  Page 50 

Carl-Bosch-Str. 4 www.troopers.de  

69115 Heidelberg www.insinuator.net  

 

 Reliance on nested virtualization support. The proposed design relies on work- ing support for 

nested virtualization. None of the presented hypervisors considers this feature production ready, 

and bugs and instabilities have to be excepted. While this might have an negative impact on the 

results of this thesis, better support for nested virtualization will reduce the impact of this 

limitation in the near future.  

4.6 Conclusion 

The design of our memory access tracing toolkit is built on top of hardware-assisted virtualization and the 

use of Intel EPT to dynamically modify page table permissions. By running a target hypervisor as a nested 

virtual machine and removing access permissions from memory pages used for inter-domain 

communication, all accesses to these pages can be logged. We use virtual machine introspection library to 

access VM memory, identify the shared pages and to extract the state of the virtual CPU whenever a 

memory access is detected. In order to keep the active overhead as low as possible and to allow offline 

analysis, collected traces are stored in a dedicated trace storage. The two proposed analysis algorithms 

operate directly on this storage, leading to a largely decoupled architecture that allows for the 

replacement of most components. 
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5. Implementation 

In this chapter the implementation of the architecture proposed in Chapter 4 is presented. The Xen [3] 

hypervisor was chosen as the hosting hypervisor using the libvmi [33] library as the interface between 

hypervisor and trace collector. The Simutrace [34] tracing framework is used as a trace storage, which 

only required the trace collector and analysis algorithms to be developed from scratch. All used third party 

components offer a C API, giving us as wide range of possibilities for our implementation language. Due to 

the ease of integration and high performance requirements C++ was chosen as implementation language. 

Thanks to the decoupled design, large parts of the implementation are completely target independent. As 

discussed in Section 4.3.3, only the trace collector requires target specific code. For this thesis, support 

for three hypervisors was implemented: Xen, Hyper-V and KVM, with Xen having the most mature 

implementation. In all cases, the inter-domain communication mechanisms used by paravirtualized 

devices, which were highlighted in depth in Section 2.5, were targeted. The following section concentrate 

on the code paths that are target independent, the target specific functionality is documented separately at 

the end of the chapter. 

5.1 Components 

The proposed design was split into five main components. Three of those could be implemented by using 

off-the-shelf components: (a) The L0 hypervisor responsible for hosting the management domain, the 

target system and offering APIs for introspection and EPT manipulation. (b) The VMI library that sits 

between the trace collector and hypervisor and (c) the trace storage for persistent and efficient storage of 

memory traces. 

5.1.1 Hypervisor 

The Xen hypervisor was chosen as L0 hypervisor for our implementation. For an introduction to the 

general architecture of the Xen hypervisor see Section 2.5.1. Xen is one of the two mainstream open 

source hypervisors (the other one being KVM). While being open-source is not a requirement in itself, none 

of the available commercial hypervisors offers an API that fulfills the requirements detailed in Section 

4.3.1. In comparison to KVM, Xen offers a more feature rich API out of the box, including support for EPT 

based memory interception using the memaccess API. All APIs can be used from user space applications 
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running in the management domain dom0 removing the need to perform direct modifications to hypervisor 

code. 

Nested virtualization is considered to be a tech preview feature not suitable for production use but 

supported for most configurations. The official Xen wiki[30] lists Xen itself, KVM, Vmware and Hyper-V as 

working targets for nested virtualization. While we were not able to replicate all of these results during 

implementation, the main evaluation requirement of running Xen on Xen is well supported. 

Most of the development was performed on Xen version 4.5, the current stable version at the time of 

writing. However, API calls to Xen are wrapped using the libvmi library for introspection, which offers a 

stable API, supporting all recent Xen versions and hides Xen API changes from our toolkit. In addition, the 

libvmi interface is less complex than the direct Xen API, reducing the implementation effort even further. 

5.1.2 Virtual Machine Introspection 

libvmi is a open source C library for virtual machine introspection (VMI)[33]. It offers a mostly hypervisor 

independent API to read and write memory of a virtual machine, intercept hardware events and accessing 

the virtual CPU state. In addition, utility functions that provide easy access to semantic information, such 

as the list of running processes or a map from CR3 registers to process IDs, are available for Linux and 

Windows guest systems. libvmi supports the Xen and KVM hypervisors and can also operate on physical 

memory dumps. 

 

Listing 3. Using libvmi to extract a pointer out of VM memory 

Listing 3 shows an example of using the libvmi API to extract an 8byte pointer value out of the VM memory: 

The read_ptr function first translates the virtual address val into a physical address using the 

vmi_pagetable_lookup function and the address of the used page table structure dtb. The vmi_read_64_pa 
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function is then used to extract the bytes out of the VM memory and store them in the returned variable 

value. The interesting aspect of this code is that it is entirely implemented in standard user-space C++ 

code and works with all hypervisors that are supported by libvmi. This is more preferable than the 

potential alternative of adding code to the hypervisor itself or interacting with a number of potentially 

unstable APIs. 

The most useful feature of libvmi is its support for Xen’s memaccess API. This feature is part of a more 

general functionality offered by libvmi, its event API. This API can be used to trap on certain register 

writes, as well as on memory accesses. While trapping on registers is limited to those where a write 

access triggers an VM exit, memory traps use the Xen memaccess API, which itself is based on EPT 

permissions. 

5.1.3 Trace Storage 

Simutrace [34] is used for the storage and retrieval of memory access traces. It is based on a client server 

architecture that allows for fast and asynchronous writing of trace entries. The client component, which is 

running as part of the trace collector communicates with the server component using shared memory. The 

server is responsible for compression and storage of the collected data, reducing the work that needs to 

be performed by the trace collector. 

Simutrace was designed for ease-of-use and has a simple C API that can be easily integrated into both the 

trace collector and analysis clients. In particular, reading and writing of trace entries uses an almost 

identical API. A core concept of Simutrace are streams. Each stream consists of a number of ordered 

entries of a single type and streams can be created by the client whenever required. The separation of 

semantically different trace entries into streams, allows for a number of useful optimizations [34]: 

Because all entries in a single stream have the same size, unique entries can be directly addressed by 

offset. Additionally, custom compressions methods optimized for specific trace types can be implemented. 

This feature helps our implementation to reduce the space requirements of long running traces. 

5.2 Trace Collector 

The trace collector is responsible for the identification of shared memory pages, the tracing of memory 

accesses and the subsequent data extraction and communication with the trace storage. It uses libvmi to 

communicate with the hypervisor and stores the traces using Simutrace. 
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5.2.1 Identification of Shared Memory Pages 

The first task of the trace collector is the identification of shared memory pages used for inter-domain 

communication. This task could be done completely target independent by walking through the extended 

page tables of the target system and searching for physical pages that are mapped by different guests. 

However, this approach is hard to implement correctly and very error prone. For example, as discussed in 

Section 2.5.3, the KVM hypervisor maps the whole memory of each 5.2.2 of its guest into the address space 

of the corresponding QEMU process. Simply iterating over the page tables would indicate that all pages of 

the guest are shared with the host system. Of course, almost none of these pages are ever used for shared 

memory communication making the general approach unsuitable in the case of KVM. Furthermore, 

without target specific code all updates to the EPT tables managed by the L1 hypervisor need to be 

intercepted to make sure they do not create a new shared memory mapping. This would create an large 

overhead, not acceptable for our use case. For these reasons, our implementation requires target specific 

code to identify the set shared pages and to intercept all updates to this set. 

Regardless of the target hypervisor, the result of this step is an updated set of guest physical pages of the 

L1 hypervisor memory. Every one of these pages is shared between two virtual machines, which for our 

case normally means it is shared between the management domain and an unprivileged guest. It is 

important to note, that these characteristics are not important for the rest of the trace collector 

implementation. As long as the page set is valid and updated regularly, tracing could also be performed on 

a page that is shared between two user space processes or used for kernel communication. 
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5.2.2 Tracing of Memory Accesses 

 

Listing 4. Creating a memory event in libvmi 

The tracing of memory accesses is implemented on top of the event API offered by libvmi. Listing 4 

demonstrates how this API can be used to intercept accesses to VM memory. The event variable specifies 

the details about the registered event. This includes the physical memory address that should be trapped, 

whether the whole page or only the exact address should trigger an interception and which types of access 

should be handled. The callback function will be called whenever the event is triggered. After event is 

initialized, it is registered using the vmi_register_event function. 

Even though the libvmi API hides a lot of the underlying complexity from the developer, the underlying 

implementation uses the EPT based approach outlined in the last chapter. The vmi_register_event call 

triggers the use of Xen’s memaccess API to modify the EPT permissions of the physical page 

corresponding to paddr. When an EPT violation on this page is triggered, Xen notifies libvmi, which passes 

execution to the specified callback function. The generation and storing of a trace entry is then performed 

inside this callback function. 
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Figure 5-1. Decision tree for the callback handler function. 

The trace collector uses this API by registering a memory event that triggers on read and write accesses 

for every shared memory page. All these events call back to the xen_trace_event function when triggered. 

Listing 5.1 shows the layout of this callback function. When the callback is executed, the target VM is 

paused. This makes it possible to access the complete state of the virtual machine, which is used to 

extract the id of the currently active L2 guest. By knowing the domain id, the code can distinguish between 

memory accesses performed by the privileged backend and the ones done by the frontend running in an 

unprivileged domain. When the unprivileged domain performs the memory access, no further data 

extraction is performed. Instead, a fake trace entry with all fields set to zero is generated. These fake 

entries can be later used by the analysis algorithms to detect context switches between unprivileged and 

privileged domains. 

If the privileged domain did perform the memory access, the trace collector needs to collect all 

information used by the analysis algorithms. The accessed physical memory address and the type of 

memory access is communicated by the triggered EPT violation and automatically provided to the callback 

function. In addition, the virtual RIP and CR3 register values are extracted using libvmi. Using these 

information, the bytes of the accessing instruction can be fetched from VM memory. As discussed in 

Section 4.1.2, it is important to store the size of a memory access to perform a precise double fetch 
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analysis. This information is not included in an EPT violation and needs to be extracted out of the 

instruction properties. To do this, the Capstone [7] disassembly library is used. Capstone is a multi-

architecture disassembly library with a powerful and easy to use C API. By using Capstone to disassemble 

the instruction, its operand sizes and therefore the size of the memory access can be learned easily. 

Fetching and disassembling instruction is relatively expensive in comparison to the other performed 

actions. Initial evaluation showed that almost all memory accesses are performed by only a small set of 

instructions, with an even smaller subset of instructions accessing shared memory hundreds of times 

during even short traces. To reduce the overhead of superfluous fetching and disassembling, a caching 

layer was introduced. In addition, the instruction bytes itself are not stored directly in the trace entries but 

are instead stored in a specialized instruction stream, which only uses a single entry for each unique 

instruction. 

After all necessary data is fetched from the caching layer or the instruction itself, a trace entry is created, 

which is then written to a dedicated tracing stream provided by Simutrace. If the callback function would 

simply return after this, without modifying the EPT permissions, the target VM would be stuck in an 

endless loop triggering an EPT violation over and over again. Instead, the EPT permissions responsible for 

the violation are relaxed temporarily and a single step is triggered in the target VM. After this, EPT 

permissions are restricted again. This approach ensures that no memory accesses are missed. 

5.2.3 Trace Entries 

As discussed in the last section, the presented implementation uses two separate Simutrace streams to 

store memory access traces and instruction data. The first stream is responsible for storing the actual 

memory access trace. To do this, it uses the data type visualized in Figure 5.2, which is provided by 

Simutrace. By using this pre-defined data type, SimuTrace is able to use an optimized compression 

algorithm specialized on memory traces. This leads to an improvement in the compression ratio and 

reduced space requirements during long tracing sessions, as well as a faster compression speed. The 

following data fields are stored in the trace: 
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Figure 5-2. Layout of a memory trace entry. 

 Cycle count. A 48 bit steadily increasing time value. This can be used to correlate events stored in 

different streams, but this is currently not required by the implementation. Therefore, the trace 

collector just stores an incrementing value in this field. 

 Full size flag. A 1-bit flag to indicate whether the memory access size is 64bit. This is required for 

correct parsing of the combined data/size field at the end of the entry. 

 Tag. A 15-bit value for storing arbitrary data which is not interpreted by Simutrace. The trace 

collector uses this field to store whether a memory access was a read or write. 

 Instruction pointer. The address of the instruction that performed the memory access. 

 Memory Address. The accessed virtual memory address. 

 Data and Size. Simutrace uses a single 64bit field for storing the access size as well 

as optional memory contents. A 64bit access can be indicated by using the full size flag. Smaller 

accesses use the last 32bits of the field to encode the access size and the first 32bits to store the 

data content. 

Because the implemented analysis algorithms do not require access to memory contents, the trace 

collector simply zeroes the data field of every trace entry. While this makes the entry type more complex 

than needed, it allows the simple addition of memory content when required. If a new analysis algorithm 

would require access to the memory content, all existing algorithms could still be used without being 

rewritten to support a new format. Furthermore, compression makes the storage cost of the addition field 

negligible. In addition to this memory access stream, a second stream is used to store semantic 
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information about the instructions that triggered a memory access. Because a single instruction can be 

executed hundreds of times during a single tracing session, there  

is no one to one mapping between instructions and memory accesses. This means storing the instruction 

data inside the previously discussed entry type would be extremely inefficient. This second stream stores 

entries of the format shown in Figure 5.3. Besides including the virtual RIP and CR3 registers, the raw 

instruction bytes are stored. In addition, the human readable name of the kernel driver containing the 

instruction, and the instruction offset relative to the driver start address is added when possible. This data 

is later used by the analysis algorithms to ease manual analysis. 

 

Figure 5-3. Layout of an instruction trace entry. 

Even though the described usage of Simutrace is quite simple, it is sufficient for our normal use case of 

tracing the communications between two virtual machines. In theory, dedicated streams could be used for 

different shared memory pages or paravirtualized devices. However, this added complexity does not have 

any clear benefits as long as the size of the main stream does not get too large. On the other hand, adding 

more streams to store more semantic information might be necessary when implementing additional 

analysis algorithms. Due to the design of Simutrace this is easily possible, without breaking backwards 

compatibility. 
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5.2.4 Attaching & Detaching 

An optional feature that proved to be very useful during normal usage is the ability to attach and detach the 

trace collector at arbitrary times. This allows to only trace memory access during a certain time frame and 

to update the trace collector without restarting the target virtual machine. Having the ability to safely 

detach the trace collector is also a useful feature to handle exceptions: A goal of the collector 

implementation was to not crash the target hypervisor because of premature exits of the trace collector. 

To enable this, one important assumption must always hold: All registered memory events need to be 

deregistered, before the trace collector process exits. Otherwise, a memory access to one of the traced 

memory pages will trigger a hypervisor intercept, which however is not able to pass the event further to 

the trace collector, leading to a hang of the target system. To ensure correct behavior, the trace collector 

always keeps a list of all currently active memory events in a global state object. The destructor of this 

object is responsible for deregistering all active events. Enabling interactive attaching and detaching only 

requires capturing user invoked signals send to the process using the sigaction function and letting them 

trigger a controlled exit. This will automatically call the state destructor, letting the target virtual machine 

run unrestricted. 

5.3 Analysis Algorithms 

As previously discussed in Section 4.1, two algorithms were implemented for this thesis: Attack surface 

and double fetch analysis. Both algorithms only communicate with Simutrace, allowing for full offline 

analysis even if the target system is not running anymore. This also means that the algorithms are 

independent of the exact implementation of the trace collector. Switching from an EPT based trace 

collector to a different approach based on software emulation would not require a rewrite of the analysis 

components, as long as the same data is collected. 

Both implemented analysis algorithms were developed as standalone C++11 tools. They have no external 

dependencies besides the Simutrace library and communicate with Simutrace using a small wrapper 

around the default API. The wrapper provides a type-safe lambda based interface to iterate over streams 

and entries while not performing any superfluous copies. 
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5.3.1 Attack Surface 

The attack surface algorithm is very simple. We consider every function in a backend driver that performs 

a read access to a shared memory region to be part of the attack surface. This is because all code that 

operates on attacker controlled data can have vulnerabilities and should be analyzed further. 

To identify all instructions working on shared memory, the algorithm iterates of the memory access 

stream until it finds a read access. Using the stored RIP instruction pointer, the corresponding instruction 

is fetched out of the instruction_entry stream and stored in the result set. This process continues until the 

whole stream is enumerated. 

The analysis tool supports two output modes: The first mode lists all discovered instructions in a human 

readable output format. The second mode outputs in a machine readable format that can be easily 

imported into other tools. A proof-of- concept script was developed to import this output into a database 

file used by the IDA[17] disassembler, allowing for efficient manual analysis of closed source backend 

components. 

5.3.2 Double Fetches 

The main analysis algorithm implemented for this thesis identifies double fetch vulnerabilities by 

searching for potentially vulnerable access patterns. An overview about the design of this analysis was 

already given in Section 4.1.2. Double fetches can be discovered by finding multiple fetches from an 

address in a privileged single execution context. Context switches, meaning a switch between the 

privileged and unprivileged domain, are detected by looking for memory access performed by the 

unprivileged domain. As described in the last section, when the trace collector sees a memory access by 

the unprivileged domain an empty trace entry will be submitted. The double fetch algorithm uses these 

artificial events to split the memory trace into chunks that correspond to a single execution context. The 

algorithm can be further configured in two ways: 

 Overlapping memory accesses. Depending on a configuration flag, the algorithm identifies only 

multiple accesses to a memory address with an identical start address, or also considers 

overlapping accesses with potentially different sizes to be a sign for a double fetch vulnerability. 

Disallowing overlapping memory accesses can be used to reduce the number of false positives, 

while at the same time increasing the chance to miss a potential vulnerability. Only considering 

accesses with the same start address reduces the noise level, because copy operations that 
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operate on blocks of data are filtered in most cases. Of course, this setting raises the risk of false 

negatives. 

 Interweaved read and writes. Until now, our discussion of double fetch issues mostly ignored the 

handling of privileged writes to the same address. Inter- weaved reads and writes of a memory 

access often indicate a synchronization primitive or a reuse of a memory area. There are two 

ways they can be handled: Either they are ignored completely, or they reset the access count 

back to zero. A reason for the second behavior is the fact that synchronization primitives, such as 

mutexes, will be repeatedly read and written and might make the analysis algorithm output more 

noisy. On the other hand, an application could mistakenly use the shared memory region as 

temporary storage and removing these accesses from the output can therefore lead to false 

negatives. 

Figure 5.4 shows the code flow of the double fetch analysis in its most conservative setting: Interweaved 

reads and writes are forbidden and only accesses with the same starting address are considered as 

potential double fetches. The algorithm stores the set of instruction pointers, that accessed a certain 

address, in a hash map which is initialized to be empty. The code iterates over every trace entry and 

checks whether it is an empty entry generated by an unprivileged memory access. Privileged accesses are 

divided into reads and writes. A read triggers the addition of its instruction pointer to the map entry of the 

accessed address. A write clears the map entry of the address, as long as interweaved writes are 

forbidden. Otherwise, it is just ignored. 
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Figure 5-4. Conservative double fetch analysis. Interweaved reads and writes and overlapping memory 
accesses are ignored. 

Unprivileged accesses indicate that a context switch occurred and trigger analysis of the hash map: Every 

map entry that consists of more than a single instruction pointer, is added to the list of double fetch 

candidates. After that the map is cleared again and the analysis continues with the next entry. When the 

stream ends, the map is analyzed a last time and the list of double fetch candidates is returned. 

Before printing this list to the user, entries that occur multiple times are removed. In order to not miss 

potential interesting variants involving three or more memory accesses, only entries that contain identical 

set of instruction pointers are considered identical. The discussed configuration settings have a large 

impact on the number of double fetches discovered, as well as their security relevance. Chapter 6 

evaluates the effect of these settings against real world targets. 

5.4 Target Specific Code 

As discussed in Section 5.2 our implementation requires target specific code in three 

places: 

 Identification of shared pages. In order to trace memory access to shared mem- ory pages, these 

pages need to be discovered first. This step normally requires parsing and traversing of 
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hypervisor data structures and is only feasible if such a global data structure exists. The 

advantage of finding all shared memory pages at a certain point in time is better support for 

attaching and detaching of the trace collector. If this approach is not feasible, interception of 

shared page creation as discussed below can also work without this mechanism. 

 Interception of shared page updates. Even if the feature to identify all shared pages is 

implemented, doing so for every context switch would incur an unacceptable performance 

overhead. Instead, updates to the set of shared pages, meaning their creation and destruction 

should be intercepted. This makes it possible to keep a current set of shared pages without 

performing unnecessary work. If shared pages are not stored globally, this mechanism can also 

be used as a partial replacement. All pages that are created while the trace collector is attached 

can be extracted and traced correctly. Of course, this has the down side that shared pages might 

be missed if the trace collector does not attach to a target system immediately during startup. 

 Domain identification. The trace collector requires the ability to differentiate be- tween privileged 

and unprivileged memory accesses. This can be done by identifying the currently active domain in 

the EPT violation handler. For L2 guests that are virtualized using hardware-assisted 

virtualization, this information can be extracted by analyzing the currently active VMCS (see 2.3.1). 

Unfortunately, Xen and libvmi do not provide an easy way to access this data for nested 

hypervisors. This requires the use of target specific code. 

Interestingly, the first two mechanisms have no explicit relationship to inter-domain communication. The 

same functionality could also be implemented for two user space processes performing shared memory 

IPC or for user space to kernel communication. The same holds true for the concept of domain 

identification, which is only used as a mechanism to distinguish between privileged and unprivileged 

memory accesses. Instead of identifying the domain responsible for the memory access and deciding the 

handling of the access based on its privileges, the same could be done with process privileges. 

Still, the focus of this thesis lies on inter-domain communication, and the following three targets were 

chosen as evaluation targets: Xen, KVM and Hyper-V. For reasons discussed in the next section, the Xen 

implementation is by far the most mature one and is the core focus of our evaluation. However, the 

outlined approaches for the two other hypervisor architectures demonstrate that our general design is not 

target specific and can be used to search vulnerabilities in different target software. 
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5.4.1 Xen 

5.4.1.1 Identification of shared pages 

Xen’s primary mechanism for inter-domain shared memory communication are grant tables, introduced in 

Section 2.5.1. By using a special hypercall named grant_table_op, domains can share their own memory 

pages with other domains. With this knowledge, the code to extract shared pages and to get notified of 

possible page changes is quite simple: In the first step, a list of all active domains running in the target 

hypervisor is extracted by traversing through a global Xen data structure named domain_list. For each of 

these domains, the location of the grant_table is read and all grant entries are processed. While the exact 

structure of a grant entry is quite complex, the only relevant attribute for our implementation is the guest 

physical frame number. 

5.4.1.2 Interception of shared page updates 

The described mechanism alone is sufficient for finding all shared memory pages at a certain point in 

time. However, additional grant entries can be created on demand by paravirtualized drivers. In order to 

get notified of changes to the grant tables, we use libvmi to create a breakpoint at the end of the 

grant_table_op hypercall handler. By breaking at the end, the new grant entries are already inserted into 

the grant table and can be extracted as described before. 

Due to the strict separation of memory spaces in the Xen architecture, all shared memory spaces need to 

be implemented using the grant table functionality. This en- sures that the described approach does not 

miss any shared pages that are established using other means. 

5.4.1.3 Domain Identification 

The aforementioned steps work regardless of the virtualization type used for the L2 guest, because both 

paravirtualized guests and guests using hardware-assisted virtualization rely on grant tables. In contrast 

the implemented approach for identifying the currently active domain is specific to paravirtualized guests. 

This is valid, because the management domain dom0 is always paravirtualized and we can freely choose 

the virtualization type for the unprivileged guest. Furthermore, several paravirtualized device frontend do 

not support hardware-assisted virtualization based guests. This makes paravirtualization the logical 

choice for the domU. 
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Paravirtualized guests share their address space with the hypervisor, which is globally mapped at the high 

end of the address space. Every virtual CPU has its own hypervisor stack specified in the MSR register 

SYSENTER_ESP. At the bottom of the stack, a cpu_info structure is stored that contains a pointer called 

current_vcpu that points to another management structure describing the state of the virtual CPU. This 

structure has a pointer to the domain that is currently active in the domain field, which in turn contains the 

domain id. Listing 5 shows how the trace collector extracts this data by reading the SYSENTER_ESP and 

CR3 registers. After this the described data structures are traversed by repeatedly fetching the memory of 

the target system. 

 

Listing 5.  Identification of the currently active Xen domain using management data structures stored by 
the hypervisor. 

5.4.2 KVM 

As described in Section 2.5.3, the complete address space of a KVM guest is mapped into its corresponding 

QEMU process. This means that in theory every guest page can be considered shared. In practice, only a 

small subset of these pages is accessed by the management domain during the lifetime of the VM and 

tracing accesses to all pages would introduce an extreme performance overhead. Instead a potential trace 

collector implementation has to rely on trapping on the creation and destruction of virtqueue data 

structures which are used by virtio drivers. This can be done by intercepting calls to the QEMU virtqueue 

initialization and destruction functions, and parsing the past arguments. 
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Differentiating between the KVM host and unprivileged guests is easy to do in KVM, because the KVM 

hypervisor is running in the same address space as the rest of the host operating system. This means the 

privileged host domain can be recognized by simply checking for a running KVM. 

5.4.3 Hyper-V 

As discussed in Section 2.5.2, the main mechanism used for shared memory communication in Hyper-V 

are GPADLs. Mapping GPADLs into the address space of a partition requires the partition to perform a 

hypercall. By intercepting this hypercall shared memory pages can be identified. 

Domain identification in Hyper-V can be implemented by identifying a unique and constant physical 

memory address for all domains. While this requires some manual analysis in the beginning, it allows fast 

and stable differentiation between the different systems. 
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6. Evaluation 

In this chapter, the presented approach to discover software vulnerabilities in inter- domain 

communication is evaluated against a real world target. The goals of this evaluation are threefold: (a) 

Analyze and discuss the performance overhead introduced by the presented implementation. (b) Gain a 

better understanding of the characteristics of inter-domain communication in Xen and most importantly 

(c) dis- cover vulnerabilities in the privileged components involved in this communication. 

In Section 6.1, the methodology chosen for this evaluation is presented. This is followed by a description of 

the evaluation setup, including the used hardware, software versions and configuration settings in Section 

6.2. Section 6.3 describes the results of our evaluation, including performance numbers, instruction 

statistics and the results of our attack surface and double fetch analysis algorithms. Following this, two of 

the more interesting results of our evaluation are discussed in greater depth in Sections 6.4 and 6.5, 

before the chapter concludes in Section 6.6. 

6.1 Methodology 

The evaluation is split into two parts. In the first part, benchmarks for CPU, disk and network performance 

were executed to gain a better understanding of the passive and active overhead of nested virtualization in 

general and our tracing toolkit in particular. In the second, more important part, the two implemented 

analysis algorithms are executed on multiple collected traces and the results are analyzed. 

As discussed in the last chapters, the following hypervisors were chosen as potential target systems: Xen, 

KVM and Hyper-V. Unfortunately, evaluation of KVM was heavily restricted due to instabilities of the Xen L0 

hypervisor when running L2 guests virtualized by KVM. In the same vein Hyper-V did not start when 

running as virtualization guest. Even though some time was spent trying to identify and patch bugs in Xen’s 

nested virtualization support, this was not successful. Therefore, our evaluation was only performed 

against a nested Xen hypervisor and its paravirtualized devices. 

One of the inherent problems of dynamic analysis is the fact that only code that gets executed can be 

analyzed for vulnerabilities. This means that as much functionality as possible needs to be used in order to 

get useful results from the two analysis algorithms. While no reliable automatic way for triggering all 

functionality of the frontend driver was developed, device activity was triggered manually in several ways: 

Tracing was active during the boot process and shutdown process. This means all actions performed 

during device initialization and destruction were traced. During runtime of the L2 domU, the functionality 
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of the device was used as varied as possible. For block devices this includes the reading, writing, creation 

and deletion of files and directories, whereas a network device was used for network communication using 

different protocols and traffic patterns. In addition, device configuration was queried and modified when 

possible. To ensure that the performed activity lead to an acceptable code coverage, the output of the 

attack surface algorithm was compared to the source code of the backend driver. These comparisons 

indicated that our approach was successful in reaching a good code coverage. 

All discussed performance benchmarks were executed four times with the presented results being the 

averaged results of the last three runs. 

6.2 Evaluation Setup 

Our evaluation setup consists of a single physical system running all components of our architecture. 

Table 6.1 shows the configuration of this system and the version numbers of all relevant components. 

 

Table 6-1. Evaluation setup 

In theory, the version of Xen used does not have an impact on the implementation of paravirtualized 

devices. Instead the frontend and backend components are part of the virtualized guests. Still, we have 

chosen to use two different Xen systems as L1 hypervisors in order to get full support for all supported 

paravirtualized devices: With version 4.5 Xen removed support for its traditional management stack xend 

and only supports the new xl management utility. However, several of the more exotic paravirtualized 

devices such as SCSI and USB devices are only supported using the older xend based management stack. 
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Table 6-2. Target systems 

This means efficient testing requires at least two target systems with different L2 management domains. 

Table 6.2 shows the configuration of these two target systems: The first called Xen-Ubuntu is running the 

Xen hypervisor in version 4.5 using an Ubuntu 15.04 system as management domain. The second system 

Xen-SLES is running Xen in version 4.4.2, which is one of the last versions with support for xend. The 

management domain is running Suse Linux Enterprise Server in version 11 SP4. SLES was chosen as 

management domain because of its extensive support for some of the lesser known paravirtualized device 

types. 

A paravirtualized guest in Xen uses a number of paravirtualized devices under normal circumstances. This 

includes devices required for normal operation such as a block device representing the virtual hard drive, 

a virtual network interface and a frame buffer. In addition, the following devices were explicitly added to 

the target systems: 

 PVUSB. Paravirtualized USB Support enables the passthrough of USB devices to a virtual 

machine. Xen’s implementation is implemented in the xen-usbback (backend) and xen-usbfront 

(frontend) kernel modules. To enable testing of these modules, the level 2 domU was configured 

to use a USB device accessible from the L2 dom0. Support for paravirtualized USB devices was 

only available on Xen-SLES. 

 PVSCSI. Paravirtualized SCSI allows the direct use of a SCSI device in a virtual ma- chine. The 

functionality is implemented in xen-scsiback and xen-scsifront. Only the older xend based 

management stack has support for this feature making it only available in Xen-SLES. 

 PCI Passthrough. Allows the use of PCI devices in a virtual machine. PCI passthrough is well 

supported in both management stacks and could be tested on both Xen-Ubuntu and Xen-SLES. 

 Disk Backends. Frontend support for paravirtualized block devices is implemented by the xen-

blkfront kernel module. For the backend, there are multiple options: A kernel based backend 

called xen-blkback, a separate user space daemon named blktap and the xen_disk backend 

included in QEMU. All of these backend devices were tested in separate tracing rounds. 
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6.3 Results 

This section describes the results of the performed evaluation. In the first part the performance 

characteristics of our approach are evaluated by comparing the results of two benchmarks testing CPU 

and paravirtualized device performance. After this, several data points concerning the characteristics of 

inter-domain communication in Xen are highlighted. This includes the number of memory accesses 

performed during our traces, as well as statistics about the types of instructions that operate on the 

shared memory regions. The section continues with an analysis of the output of the attack surface 

algorithm, describing the different components that can be potentially targeted by an attacker. Finally, the 

results of the double fetch analysis algorithm are presented and the discovered vulnerabilities are 

discussed. 

6.3.1 Performance 

Two benchmarks were performed to assess the overhead introduced by our implementation: CPU and 

memory performance was measured using the sysbench benchmark utility. The assumption for this 

benchmark was that a small overhead is introduced by nested virtualization, but no significant additional 

overhead should be added when active tracing is performed. The reason is that the benchmark does not 

directly interact with shared memory pages, so any additional slowdown is triggered by background 

activity of the paravirtualized devices. In addition, the write performance to a paravirtualized device was 

evaluated by using dd to write a 1GB file to a virtual hard drive. Because every data transfer is passed 

through shared memory, a very large overhead introduced by active tracing was expected. All of the tests 

were performed on Xen-Ubuntu running the previously discussed configuration. 
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6.3.1.1 CPU/Memory 

 

Figure 6-1. Sysbench CPU and memory benchmarks. Average runtime in seconds. 

Figure 6.1 shows the results of the two performed sysbench benchmarks. In both cases, native 

performance was compared to a system running under nested virtualization without active tracing, as well 

as a nested guest whose inter-domain communication was actively traced. The prime calculation 

benchmark was performed using sysbench –num-threads=1 –test=cpu –cpu-max-prime=25000 run, which 

involves the repeated calculation of all primes till 25000. As expected, there is no significant overhead 

introduced by nested virtualization itself or active shared memory tracing. 

The memory write benchmark used sysbench –num-threads=1 –test=memory –memory-total-size=10G 

run to calculate the memory performance by writing 10GB of data into memory. In this case, there is a 

clear overhead introduced by nested virtualization. Still, the active tracing of shared memory 

communication does not introduce additional overhead as long as the written data does not touch the 

watched memory pages. 
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6.3.1.2 Paravirtualized Device I/O 

 

Figure 6-2. Paravirtualized disk benchmark. Write speed in KB/s. 

Figure 6.2 shows the performance of a dd write of a 1GB file to a paravirtualized hard disk. Because the 

complete 1GB file content is transferred over the traced shared memory pages, write speed crawls down 

to 36 KB/s when active tracing is performed. This shows the high active overhead introduced by our 

approach and its limitation in tracing heavily used memory segments. 

6.3.2 Inter-domain communication characteristics 

A dedicated tracing run was performed using the Xen-Ubuntu target to gain a better understanding about 

general characteristics of inter-domain communication in Xen. Ten minutes of simulated system activity 

was traced, which includes paravirtualized disk activity by searching through the file system, network 

traffic generated using curl and ping, as well as interactive shell usage via SSH and the builtin Xen 

console. 

 

Figure 6-3. Ratio of different memory accesses to shared memory. 
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During the trace, about 6.3 million memory accesses were logged. Figure 6.3 shows the ratio of the 

different memory accesses. Half of the accesses were performed by the unprivileged domain, while two 

thirds of the privileged memory accesses were writes. The almost exact 1:1 ratio between privileged and 

unprivileged accesses makes sense when thinking about the way data is transferred over shared memory: 

It is written by one side and fetched by the other. The higher ratio of privileged writes in comparison to 

reads can be explained with the performed system activity. Because the performed file search and 

network download are read heavy activities, the backend needs to transfer more data to the frontend than 

in the other direction. 

 

Figure 6-4. Memory access sizes (logarithmic scale). 

Figure 6.4 shows the count of the different access size using a logarithmic scale. Because only privileged 

memory accesses are logged with these details, unprivileged accesses are not included in this statistic. 

Surprisingly, more than 77% of all memory accesses have a 8 bit size, with 22% accesses of size 32 bit and 

only a few 64bit or 16bit accesses. The reason for these statistics becomes clear when looking at the most 

frequently executed instructions shown in Table 6.3. Nearly all of the single bytes memory accesses, are 

triggered by a single instruction in the copy_user_enhanced_fast_string function, which is a kernel helper 

function to copy an ASCII string from or to user space memory. Because this function operates one byte at 

a time, it triggers a high number of memory accesses when copying large strings. The second and third 

most frequent instructions are both parts of the 
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Table 6-3. Most frequent instructions operating on shared memory. 

xenconsoled daemon responsible for providing a virtual console. The reason for this high ranking is the 

heavy use of the virtual console during the tracing run. Again the more frequent instruction is part of a 

copy loop that moves data between the shared memory page and a private data structure. 

 

Figure 6-5. Ratio of instruction opcodes accessing shared memory. 

Finally, Figure 6.5 shows the ratio of the different opcodes used to access shared memory. 91% of all 

unique instructions that operated on shared memory are a variant of the mov instruction with 6% being a 

type of subtraction (sub) and 3% comparisons (cmp). While the high prevalence of mov instructions was 

expected, the existence of sub and more importantly cmp instructions are a potential indicator for double 

fetch problems: A cmp operating on shared memory, followed by a mov from the same address is a clear 

indicator for a potential double fetch vulnerability. 

In summary, the collected statistics validate our initial assumptions about inter- domain communication. 

Both frontend and backend operate heavily on the shared memory pages, and while most of the accesses 

are simple copy operations there are a number of occurrences where more complex operations are 

directly executed on these shared addresses. 

6.3.3 Attack Surface Analysis 

The attack surface analysis algorithm was executed on two traces, collected on Xen-Ubuntu and Xen-

SLES. Xen-SLES was configured to run a L2 guest using paravirtualized USB and SCSI devices in addition 

to the default configuration. The Xen-Ubuntu L2 guest had access to a paravirtualized PCI device and used 
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two separate paravirtualized hard drives, one corresponding to a raw file and the second to a block device 

on the management domain. In both cases, tracing was performed over 60 minutes of active system 

usage. 

6.3.3.1 Xen-Ubuntu 

The Xen-Ubuntu trace triggered 146 unique instructions accessing shared memory. These instructions 

were part of the following components: 

 xen-netback. The xen-netback kernel module is responsible for handling net- work traffic sent 

and received by our virtual machine over its paravirtualized interface. Even though the backend 

driver and its corresponding frontend xen-netfront communicate using a quite complex and 

feature rich protocol, the xen-netback driver is actively developed and under heavy scrutiny, 

making it a hard target to find vulnerabilities in. 

 xen-blkback. The xen-blkback kernel module is used for accesses to the paravirtualized hard 

drive that corresponds to a block device on the management domain. This is in contrast to the 

paravirtualized hard drive represented by a simple file, which is handled by the QEMU process 

discussed below. This difference in the responsible backend components is an interesting 

example to show the use case for the attack surface algorithm: A seemingly trivial configuration 

change completely replaces a security critical backend component with a different one. The xen-

blkback code is heavily integrated into the Linux block I/O layer, making in-depth source code 

review quite difficult. Nevertheless, the code is not as actively developed as the xen-netback code 

and is an interesting target for further analysis. 

 xenconsoled. The xenconsole daemon is responsible for providing a virtualconsole to a 

paravirtualized guest. The xenconsoled code base is quite small, making a full source code 

review possible. Still, on the Xen-Ubuntu management domain, the daemon is running with full 

root privileges and without security measures such as position-independent code (PIC). This is an 

unfortunate lack of hardening for such a security critical component. 

 xenstored. This daemon provides the XenStore service to all domains running on the system. 

XenStore is used an storage space shared between the domains and can be described as an 

inter-domain key value store [8]. xenstored shares the lack of defense in depth mechanisms like 

PIC with xenconsoled but has much larger functionality. This makes it an interesting target for 

further research. 
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 xen-pciback. The xen-pciback kernel module provides the backend for the paravirtualized PCI 

device running in the guest domain. Support for PCI passthrough is becoming more relevant due 

to the support for GPU acceleration in popular cloud environments. This makes this functionality 

a relevant target. 

 QEMU. While the QEMU system process is mostly for providing access to emulated devices, it 

also includes a backend component to the xen-blkfront frontend driver. As mentioned above, the 

QEMU backend is used when the paravirtualized disk is represented by a single file in the 

management domain. Due to the varying quality of QEMU’s emulated driver code, the QEMU 

process is a traditional target for attacks against Xen[50, 51]. In our evaluation QEMU is running 

as root on the management domain, but uses position independent code for its own executable, 

making Address Space Layout Randomization (ASLR) quite effective. In addition, QEMU can be 

moved into a dedicated stub domain as discussed in [8]. In comparison to the backend 

components implemented in kernel space and the lesser protected xenstored and xenconsoled 

processes, vulnerabilities in QEMU are generally much harder to exploit. 

6.3.3.2 Xen-SLES 

As expected, the tracing on Xen-SLES had large overlaps with our results for Xen- Ubuntu: Only the QEMU 

disk backend and xen-pciback were not executed on this system. Instead the following three new 

components were discovered:  

 xen-scsiback. This kernel module is the backend for the paravirtualized SCSI device. With almost 

2000 lines of code, this kernel module is one of the more complex backends and is an interesting 

target for large scale enterprise environments, where the high performance offered by direct 

SCSI access might be preferred to a more standard approach. 

 xen-usbback. The xen-usbback kernel module offers paravirtualized USB devices to a guest 

domain. In comparison to the other kernel based backend components, this module is not 

included in the mainline Linux kernel. This indicates that is is only rarely used in practice and 

makes it a less interesting research target. 

 blktap. The blktap kernel module and user space daemon are an alternative block based backend 

that is used instead of xen-blkback or QEMU for guests running on Xen-SLES. Again, this shows 

that small configuration changes can have significant impact on the existing attack surface. 

In summary, 9 separate privileged components working on shared memory could be identified using the 

attack surface algorithm. Due to Xen’s open source nature, these components could also be identified 
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manually by reading source code and documentation. However, the same algorithm also works on 

proprietary hypervisors such as Hyper-V, where a manual analysis would be much more difficult. 

6.3.4 Double Fetch Vulnerabilities 

The double fetch algorithm was executed on the same traces used for attack surface analysis in the last 

section. This resulted in 39 potential double fetch issues. In the following, these results are analyzed and 

discussed. 

6.3.4.1 False Positives 

A large percentage of the discovered double fetches can be considered false positives, because they do not 

indicate any type of security vulnerability or software bug. For this purpose, we define false positive as a 

double fetch that happened but does not cause incorrect behavior. False positives can be again separated 

into two overlapping classes: The vast majority of false positives are repeated accesses to synchronization 

variable such as mutexes. The second case are double fetches from variables that always include the 

necessary security checks after the fetch. 

 

Listing 6. Suspected double fetch in xen-netback. The report generated by the double fetch algorithm 
shows repeated accesses to a single memory address. 

Listing 6 shows a false positive reported in the xen-netback kernel module. Output from the double fetch 

analysis always follows the same output format: The first line lists the memory address that was accessed 

multiple times. After that, the first row lists the virtual address of the instruction that performed the 

memory access followed by the value of the CR3 register at that point in time. The third row lists a human 

readable name of the responsible process or kernel module before the disassembled instruction is printed 

at the end of the line. 
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When matching these trace entries to the source code of xen-netback it becomes clear that the accesses 

are triggered by repeatedly querying for new requests on the shared ring buffer. Of course, this does not 

lead to any kind of security issue. 

A second example for a false positive is shown in Listing 7. The double fetch was triggered by the 

handle_io function of the xenconsoled process. When looking at the source code of this function it 

becomes clear that these memory access are triggered by an inlined function whose simplified code is 

shown in Listing 8. The function reads two values cons and prod from shared memory and correctly uses a 

memory barrier to make sure the values are stored into registers. Listing 7 shows the double fetch report 

for cons, while a second almost identical report was generated for prod. After both values are stored in a 

register the unsigned size value is calculated and validated against an upper limit. This code is safe, even 

when executed multiple times. A vulnerability would only exist when one of the later accesses to out_cons 

or out_prod would not include the validation, but this is not the case making the report a false positive. 

Listing 7. Suspected double fetch in xenconsoled. 

 

Listing 8. Safe size calculation in xenconsoled. 

6.3.4.2 QEMU xen_disk 

One of the more interesting findings returned by the double fetch algorithm affects the block backend 

implementation in QEMU, also called xen_disk. QEMU defines two more or less identical helper functions 
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named blkif_get_x86_64_req and blkif_get_x86_32_req for parsing and copying frontend requests from 

shared memory to a private buffer. Listing 9 shows a simplified version of the first function. Knowing that 

the src variable points into shared memory, it is easy to see that the three accesses to the nr_segments 

field in line 7, 12 and 13 are a typical example for a double fetch vulnerability. The two last accesses are 

the most interesting ones, because they could potentially allow for a controlled heap over- flow: The if 

condition in line 12 tries to enforce that n never becomes larger than 

BLKIF_MAX_SEGMENTS_PER_REQUEST, but this could be bypassed by modifying the value of 

nr_segments between the two accesses. This can be used to trigger a heap overflow in the final for loop. 

As it turns out, this code is not exploitable in the evaluated system: The reported double fetch lists an 

access triggered by line 7 and a second one triggered by the if condition in line 12. The assignment 

operation in line 13 is optimized by the compiler and reuses the already fetched value instead of 

performing another costly memory operation. Even though this bug does not have any security impact on 

our target system, this might change if a compiler optimizes the code in a different way. Therefore, this 

potential vulnerability was reported to the Xen maintainers and is planned to be fixed as part of XSA-

155[52]. This result validates our argument from Section 3.2, that source code analysis is not sufficient to 

reliably identify double fetch vulnerabilities. In this case an analysis based only on source code would rate 

this vulnerability more critical as it is in most real world environments. 
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Listing 9. Double fetch issues in QEMU block backend. src->nr_segments is fetched multiple times 

6.3.4.3 Xen-blkback 

Another vulnerability was discovered in the xen-blkback kernel module. Listing 10 shows parts of the 

vulnerable function xen_blkbk_parse_indirect. In this case the segments array is stored in the shared 

memory region. The if conditions in line 9 and 10 perform validation of the last_sect and first_sect 

attributes of the current index. If this validation fails processing of the whole array is stopped. However, 

both of the validated values are already used before the check and all of these uses are translated into 

dedicated memory accesses. This means that an attacker can write malicious values into seg[n].offset and 

seg[n].nsec and then modify last_sect and first_sect back to sane values before the check executes. An 

exact analysis of the impact of this vulnerability is difficult to perform due to the interdependency of this 

code with the Linux block I/O layer. Still, this vulnerability was reported to the Xen maintainers and is 

planned to be fixed as part of XSA-155[52]. 
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Listing 10. Double fetch in xen-blkback 

6.3.4.4 Xen-pciback 

The most critical vulnerability discovered during our evaluation affects the backend driver for 

paravirtualized PCI devices: xen-pciback. Listing 11 shows the output generated for this vulnerability by 

the double fetch algorithm: Two memory accesses to a single address are performed one is a comparison 

with the constant 5 and the second access is a normal read. 

Manual analysis shows that both accesses are part of the xen_pcibk_do_op function, which mostly 

consists of a big switch statement as shown in Listing 12. op is stored in shared memory, but looking at the 

source code alone does not show any signs of a double fetch vulnerability. 

 

Listing 11. Double fetch in xen-pciback 
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However, the compiled code highlighted in Listing 13 quickly shows the root cause of this issue: The switch 

case was compiled into an optimized jump table, which incorrectly accesses the switch condition twice. 

Line 1 shows the first access to the op->cmd variable as discovered by the double fetch analysis. The value 

is compared to the constant 5 and if it is larger, a jump to the default case of the switch statement is 

triggered in line 3. If this is not the case, op->cmd is fetched from memory a second time and is used as an 

offset into the jump table in line 5. This is highly problematic, because the second fetch can result in an 

arbitrary value giving an attacker complete control over the indirect jump target. 

This vulnerability was reported to the Xen security team and is planned to be patched as part of XSA-

155[52]. The next section gives an introduction about how this vulnerability can be triggered and exploited 

to achieve arbitrary code execution on the management domain. 

 

Listing 12. Vulnerable switch statement in xen-pciback. op->cmd is stored in shared memory. 
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Listing 13. Assembly of the vulnerable switch statement in xen-pciback. The jump table implementation 
fetches the case value twice. This allows an attacker to control the jump destination in line 5 

6.3.5 Notes on exploiting xen-pciback 

The xen-pciback double fetch vulnerability discussed in the last section is particularly interesting for 

multiple reasons: First of all, it cannot be easily detected using source code review. Even knowing that the 

op->cmd value is stored in shared memory does not directly lead to the discovery of the vulnerability. In 

addition, the bug gives an attacker immediately indirect control over the instruction pointer making it 

highly probable that arbitrary code execution can be achieved. Lastly, the race condition can be triggered 

as often as needed and does not cause any system instability. If the race is lost, the PCI request will be 

considered invalid but this should not have any impact on the overall guest system. Still, the vulnerability 

has one relevant downside: The time between the two memory accesses is very small, because only two 

instructions are executed in between. Even though one of them is a potentially slower branching 

instruction, the time span in which the value has to be manipulated is quite small. 

As discussed in Section 2.2, we only consider guests with at least 2 virtual CPUs. Keeping this requirement 

in mind the first approach to trigger the vulnerability is quite simple: The exploit starts two processes 

scheduled on different CPU cores which both start executing an infinite loop. The first process is 

responsible for triggering requests to the xen-pciback module, which is easily possible by generating 

some activity on the PCI device. Due to the way the xen-pcifront driver is implemented, these requests will 

always reuse the same shared memory area making op->cmd always stay at the same address. By 

knowing this address, the second user process can repeatedly iterate between the original harmless value 

for op->cmd and a malicious value that triggers a jump to a different instruction pointer. As discussed by 
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[20], the easiest and fastest way to switch between these two variable states is by using the xor instruction 

with a constant value depending on the chosen target value. 

Testing the presented approach demonstrates that the short race is no problem in practice. In general, the 

race was won after less than ten PCI requests demonstrating the effectiveness of the described approach. 

By getting an invalid value past the upper limit check of the jump table implementation, an attacker has 

complete control over the lower 32 bits of the RAX register in the jmp QWORD PTR [rax*8+0x0] instruction. 

This instruction performs an indirect jump, meaning the pointer at the address rax*8+off_77D0 is fetched 

and written into the RIP register. Successful exploitation depends on the ability of an attacker to identify an 

offset which points to an attacker controlled value or a valid function pointer. While a complete description 

of an exploit for this vulnerability is out of scope for thesis, one possibly approach is outlined in the 

following. 

On a modern Linux system, the ordering and address ranges of kernel modules is almost completely 

randomized. This means that the search for potentially interesting offsets is restricted to the xen-pciback 

module itself. In addition the attacker only controls the lower half of the rax register, making it impossible 

to insert a negative value and search before the jump table at off_77D0. Still, there are several interesting 

possibilities: Almost immediately after the jump table used by the switch statement in the vulnerable 

xen_pcibk_do_op function, there is a second jump table used by the xen_pcibk_frontend_changed function 

shown in Listing 14. Listing 15 shows how the first of this switch statement is translated into assembly. 

The code copies the value of the r13 register into rdi making it the first argument for the subsequent call 

to xen_pcibk_attach. When this code is normally called, r13 points to a structure of type xen_pcibk_device, 

but when it is instead executed as part of our exploit, r13 points to the attacker controlled shared memory 

region. This means we can call the function xen_pcibk_attach that would normally operate on trusted 

internal input with an fake structure completely under our control. This opens up a significant number of 

further approaches to reach the final goal of arbitrary code execution in the management domain. 
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Listing 14. "Reusable" switch statement in xen-pciback. The jump table generated for this switch 
statement can be used to trigger a type confusion after exploiting the xen-pciback double fetch 
vulnerability. 

 

Listing 15. Assembly of a reusable switch case. When exploiting the xen-pciback double fetch vulnerability, 
r13 points to an attacker controlled location. 

r13 points to the attacker controlled shared memory region. This means we can call the function 

xen_pcibk_attach that would normally operate on trusted internal input with a fake structure completely 

under our control. This opens up a significant number of further approaches to reach the final goal of 

arbitrary code execution in the management domain. 

6.4 Restricting the Impact of Compiler Optimizations 

Besides the vulnerabilities presented above, the large impact of compiler optimization on double fetch 

vulnerabilities is a very interesting result of the double fetch analysis. To the best of our knowledge the 

xen-pciback double fetch is the first published vulnerability that is triggered by an (incorrectly) optimized 
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switch statement. On the other hand, the impact of the potential double fetch vulnerability discovered in 

QEMU xen_disk is hard to assess without knowing exactly which combinations of compiler, compiler 

versions and flags lead to a vulnerable or non-vulnerable result. 

An interesting aspect of this is the existence of code that could potentially become vulnerable due to 

seemingly irrelevant changes to the rest of the function or the compiler itself. For example, listing 16 

shows a switch case from the xen-scsiback backend. Even though it is very similar to the vulnerable one in 

xen-pciback and also operates on a variable stored in shared memory, the compiler generated code does 

not contain a double fetch. However, this could change when a new case is added, 

 

Listing 16. Potentially vulnerable switch statement in xen-scsiback. ring_reg.act is stored in shared 
memory but the compiler does not generate an insecure jump table. 

or even if the register allocation of the overall function changes due to modifications. This is of course not 

acceptable for such security critical code. 

Code that seems vulnerable when looking at the source code, but is compiled correctly due to unenforced 

compiler decisions, should be considered insecure and must be fixed. In the case of the code shown in 

Listing 9, this is as easy as adding a temporal variable for src->nr_segments and enforcing a single access 

to it using a memory barrier. 
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For code such as the two discussed switch statements that only becomes vulnerable due to compiler 

optimizations, there are two viable alternatives: First, all variables stored in shared memory could be 

marked as volatile, which enforces a 1:1 map- ping between variable and memory accesses. The other, 

more preferable approach is to restrict the primitives performed on shared memory variables to two 

secure ones: Direct accesses that copy a value into a local variable and which are protected by memory 

barriers, and the use of byte based copies that move whole structures from shared to private memory. 

This ensures that the compiler does not have the possibility to generate double fetch vulnerabilities by 

accident, and also makes it harder for a developer to introduce such vulnerabilities. 

6.5 Conclusion 

 

The presented evaluation validates several assumptions stated in the earlier parts of this thesis: The used 

memory tracing approach based on hardware-assisted virtualization and EPT permissions is well suited 

for the purpose of tracing shared memory communication. One of the main advantages to alternative 

approaches based on software emulation is the very low passive overhead. However, the chosen method 

introduces a very high active overhead when traced memory pages are heavily used. For use cases where 

a lot of memory activity needs to be traced, other approaches that try to improve the performance of 

software emulation are more feasible. 

The attack surface algorithm correctly identified privileged backend components that operated on the 

traced memory regions. However, the evaluation demonstrated an important limitation of this approach. 

Because the algorithm does not collect a stack trace, only the immediate function that accesses shared 

memory can be identified. This is a problem for cases where these memory addresses are only accessed 

using generic copy functions, which makes it harder to identify the component responsible for the access. 

A potential improvement of the algorithm could try to extract the call stack when a memory address is 

performed. However, reliable detection of stack frames is not trivial in all cases making this quite difficult 

in practice. 

The double fetch algorithm was able to identify three novel security vulnerabilities in popular backend 

components of the Xen hypervisor. This shows the feasibility of our memory traced approach for 

vulnerability discovery and indicates that our assumption about the lack of research in this area holds 

true. While the evaluation was limited to the Xen hypervisor, these results imply that research on the 

inter-domain communication of other hypervisors might be a good idea for further research. 
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Finally, the evaluation demonstrated the big impact of compiler optimizations on double fetch 

vulnerabilities. This shows that even seemingly secure source code can be compiled into vulnerable code 

and that developers have to be very careful when writing code that operates on shared memory. 
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7. Conclusion 

Shared Memory is an important mechanism for efficient inter-process communication. In many cases the 

shared memory interface is a trust boundary separating privileged and unprivileged components. 

Examples for this include sandbox implementations and the paravirtualized device architecture of 

mainstream hypervisors. This makes research on security vulnerabilities affecting these interfaces 

important, especially because issues such as double fetches make implementing safe shared memory 

communication non-trivial. 

In this thesis an approach to discover vulnerabilities in hypervisor inter-domain communication using 

memory tracing was presented, implemented and evaluated. In contrast to previous work in this area the 

presented approach is based on hardware- assisted virtualization and uses manipulation of EPT 

permissions to intercept and analyze memory accesses. This enables targeted tracing of shared memory 

communication with a very low passive overhead. The presented implementation is also largely target 

independent. Support for analyzing a new hypervisor or more generally a different shared memory 

interface can be easily added without a large implementation effort. 

The effectiveness of the presented approach was proven by performing an evaluation against the 

paravirtualized device drivers of the Xen hypervisor. The evaluation demonstrated that our implementation 

fulfills the performance requirements for analyzing a real world hypervisor and that memory tracing can 

be used to map the attack surface available to an attacker targeting shared memory communication. Most 

importantly, the implemented double fetch analysis algorithm was successfully used to discover three 

novel security vulnerabilities in backend components of the Xen hypervisor. This demonstrates that the 

presented approach is capable of finding security issues in well audited software and indicates that the 

currently used approaches to secure hypervisor related code are not sufficient. 

7.1 Future Work 

One of the most promising areas for further research is the adaption of our implementation to support 

more hypervisors. Currently only the Xen hypervisor is fully supported as a target, but this is mainly due to 

compatibility problems concerning the nested virtualization of other hypervisors. Due to the rising 

significance of nested virtualization these issues will be hopefully fixed in the near future, allowing for 

analysis of these products. In addition, adding target support for popular sandbox implementations and 
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other security critical shared memory interfaces seems to be a promising extension of the presented 

work. 

If the reliance on nested virtualization turns out to be a big road block for supporting other hypervisors, an 

alternative implementation of the trace collector based on software emulation could be evaluated. While 

this removes the advantages of our implementation that depend on the use of hardware-assisted 

virtualization, the decoupled nature of our architecture allows the reuse of all analysis components even if 

the actual trace collection is implemented completely in software. Current research such as Simuboost 

[35] tries to significantly improve the performance of software based emulation and might be a well suited 

target for such an implementation. 

An alternative extension of the presented approach is the implementation of other analysis algorithms. 

While the presented attack surface and double fetch algorithms are very effective for analyzing inter-

domain communication, other algorithms might be more suited for other use cases. In particular, it should 

be evaluated if the addition of memory contents to the memory trace could allow the implementation of 

more sophisticated algorithms enabling the discovery of other vulnerability classes. 

Finally, future work should evaluate how memory access tracing can be used in combination with other 

automated approaches for vulnerability discovery. For example, the ability to identify code segments that 

operate on shared memory using the presented attack surface algorithm could be combined with static 

binary analysis to identify missing validation checks and other security issues. At the same time 

mechanisms used for measuring and increasing code coverage during fuzz testing could improve the 

performance of the double fetch algorithm by ensuring that all interesting code paths are executed. 
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