

Penetration Testing Tools that (do not) Support

IPv6

ERNW Newsletter 45 / December 2014

 ERNW Enno Rey Netzwerke GmbH

Carl-Bosch-Str. 4

69115 Heidelberg

Tel. +49 6221 480390

Fax +49 6221 419008

www.ernw.de

Version: 1.1

Date: 12/11/2014

Author(s): Dr. Antonios Atlasis

Page 2 of 61

TABLE OF CONTENT

1 INTRODUCTION ... 7

1.1 LAB SETUP ... 7

1.2 FAMILIES OF PENETRATION TESTING TOOLS .. 8

2 INFORMATION GATHERING ... 9

2.1 ROBTEX .. 9
2.1.1 Conclusion .. 9

2.2 SHODAN ... 10
2.2.1 Conclusion .. 10

2.3 MALTEGO .. 11
2.3.1 Conclusion .. 11

2.4 DRADIS ... 11
2.4.1 Conclusion .. 12

3 DNS ENUMERATION ... 13

3.1 FIERCE ... 13
3.1.1 Conclusion .. 13

3.2 DNSRECON ... 13
3.2.1 Conclusion .. 15

3.3 TRACEROUTING - TCPTRACEROUTE .. 15
3.3.1 Conclusion .. 15

3.4 TRACEROUTE6 / TRACEROUTE .. 15
3.4.1 Conclusion .. 15

3.5 FIREWALK ... 16
3.5.1 Conclusion .. 16

4 NETWORK / PORT SCANNING ... 17

4.1 UNICORNSCAN ... 17
4.1.1 Conclusion .. 17

4.2 NMAP... 17
4.2.1 Conclusion .. 18

5 IPV6 FINGERPRINTING ... 19

5.1 NMAP... 19
5.1.1 Conclusion .. 19

5.2 XPROBE2 .. 19
5.2.1 Conclusion .. 20

5.3 P0F .. 20
5.3.1 Conclusion .. 20

5.4 AMAP ... 20
5.4.1 Conclusion .. 21

Page 3 of 61

6 BRUTE-FORCING .. 22

6.1 HYDRA ... 22
6.1.1 Conclusion .. 23

6.2 MEDUSA ... 23
6.2.1 Conclusion .. 23

6.3 NCRACK ... 23
6.3.1 Conclusion .. 23

7 PACKET CRAFTING ... 24

7.1 HPING .. 24
7.1.1 Conclusion .. 24

7.2 NPING .. 24
7.2.1 Conclusion .. 25

7.3 SCAPY .. 25
7.3.1 Conclusion .. 25

8 REMOTE SHELLS .. 26

8.1 NCAT ... 26
8.1.1 Conclusion .. 27

9 LAN / MITM ATTACKS & OTHER .. 28

9.1 NSE SCRIPTS .. 28
9.1.1 Conclusion .. 33

9.2 ETTERCAP ... 34
9.2.1 Conclusion .. 35

9.3 CAIN & ABEL ... 35
9.3.1 Conclusion .. 35

9.4 NET-SNMP .. 35
9.4.1 Conclusion .. 35

10 VULNERABILTY SCANNERS ... 36

10.1 NESSUS .. 36
10.1.1 Conclusion .. 40

11 WEB PENETRATION TESTING .. 41

11.1 BURPSUITE ... 41
11.1.1 Conclusion .. 41

11.2 ZAPROXY .. 41
11.2.1 Conclusion .. 42

11.3 NIKTO .. 42
11.3.1 Conclusion .. 43

11.4 SKIPFISH .. 43
11.4.1 Conclusion .. 43

11.5 SQLMAP.. 43
11.5.1 Conclusion .. 44

Page 4 of 61

11.6 SQLNINJA .. 44
11.6.1 Conclusion .. 46

11.7 W3AF ... 46
11.7.1 Conclusion .. 46

11.8 ARACHNI .. 46
11.8.1 Conclusion .. 47

12 EXPLOITATION FRAMEWORKS ... 48

12.1 METASPLOIT .. 48
12.1.1 Conclusion .. 51

13 WHEN OUR FAVORITE HACKING TOOL DOES NOT SUPPORT IPV6 .. 52

13.1 FAST AND EASY .. 52

13.2 EXPLOITING IPV6 FEATURES WITH YOUR IPV4 TOOLS .. 53

14 CONCLUSION ... 55

15 APPENDIX ... 56

15.1 LIST OF THE TESTED TOOLS .. 56

15.2 METASPLOIT MODULES ... 60

15.3 REFERENCES ... 61

15.4 DISCLAIMER .. 61

Page 5 of 61

LIST OF FIGURES

Figure 1 Robtex Output "ernw.de" ... 9
Figure 2 IPv6 Search Results Shodan ... 10
Figure 3 Maltego Target www.ernw.de ... 11
Figure 4 Dradis Nmap Output .. 11
Figure 5 Ncat Unencrypted Communication – Example 1 .. 26
Figure 6 Ncat Unencrypted Communication – Example 2 .. 27
Figure 7 RFC 4620 .. 30
Figure 8 Wireshark Output nmap scan .. 31
Figure 9 Flood router impact on a Windows 7 Operating System .. 31
Figure 10 Wireshark Output targets-ipv6-multicast-invalid-dst .. 32
Figure 11 Targets-ipv6-multicast-mld .. 33
Figure 12 IPv6 Hosts List Ettercap .. 34
Figure 13 Wireshark Output SNMP Walk .. 35
Figure 14 Nessus IPv6 Targets .. 36
Figure 15 Wireshark Output ICMPv6 Echo Request .. 37
Figure 16 Nessus IPv6 Host Discovery .. 37
Figure 17 Detailed Nessus Output IPv6 Host Discovery ... 38
Figure 18 Nessus Invalid Target Settings ... 38
Figure 19 Advanced Search Nessus .. 39
Figure 20 Nessus Plugins .. 39
Figure 21 Nessus Enumeration IPv6 Interfaces via SSH .. 39
Figure 22 Burp Suite IPv6 Targets ... 41
Figure 23 Zaproxy IPv6 URL To Attack .. 42
Figure 24 Zaproxy Invalid Address Proxy Error .. 42
Figure 25 Wireshark Output SqlMap ... 44
Figure 26 w3af Invalid URL Error .. 46
Figure 27 ArachniIPv6 URL .. 47
Figure 28 Arachni Issues ... 47
Figure 29 Wireshark Output Multicast Ping .. 49
Figure 30 Wireshark Output IPv6 Neighbor Router Advertisement ... 51
Figure 31 Chiron Workflow .. 53
Figure 32 IP6 Tables Firewall Configuration ... 54

file:///D:/Newsletter/Newsletter%20Antonios/Newsletter_Penetration_Testing_Tools_that_Support_IPv6_v1_1_rev_pe.docx%23_Toc405881159

Page 6 of 61

TABLE DIRECTORY

Table 1 List of Tested Tools ... 59

Page 7 of 61

1 INTRODUCTION

The goal of this study was to:

 Find out which of our favorite penetration testing tools can be used natively using IPv6 as an underlying layer-3

protocol.

 Find alternative solutions for the rest.

During our tests, only open-source or free versions of commercial tools were considered. Moreover, extensive (e.g. non

network functionality-related) testing was not performed (it was out of the scope of this study); instead, just the extent

of IPv6 support for each one of them was examined. Finally, by no means this is (or can be) an exhaustive list of

penetration testing tools.

Out of the scope of this document were also IPv6-specific tools or frameworks, such as:

 THC-IPV61

 SI6 Networks' IPv6 Toolkit2

 Chiron3

During our tests, the following methodology was used:

 The tools were tested in a virtual IPv6 lab, using various operating systems as targets and using a Linux box as a

router. The reason for doing so is because we did not want to mess with real targets. However, in some cases (DNS

resolving, trace routing), real IPv6 “targets” were tested.

 The tools were tested just about whether they can operate over IPv6 natively and not about their effectiveness

regarding penetration testing functionalities.

 Most tools were installed by using the latest available source code (since packages provided by several Linux

distributions may not be the latest one). However, there are a very few exceptions to this rule (which are noted, per

case).

 The focus was on tools known from IPv4 and not on similar features covered from IPv6-specific tools.

1.1 Lab Setup

During the tests, the following targets were used in a virtual environment deployed by using VirtualBox (for reasons of

completeness, the corresponding IPv6 addresses are also displayed):

Operating System IPv6 Address

Fedora 20 fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa

Centos 6.5 fdf3:f0c0:2567:7fe4:a00:27ff:fed1:d17a

OpenBSD 5.5 fdf3:f0c0:2567:7fe4:a00:27ff:fe6a:ca6a

FreeBSD 10 fdf3:f0c0:2567:7fe4:a00:27ff:fefc:f99a

Windows 7.1 fdf3:f0c0:2567:7fe4:c0c6:5389:f6e:99c0

1 https://www.thc.org/thc-ipv6/
2 http://www.si6networks.com/tools/ipv6toolkit/
3 http://www.secfu.net/tools-scripts/

https://www.thc.org/thc-ipv6/
http://www.si6networks.com/tools/ipv6toolkit/
http://www.secfu.net/tools-scripts/

Page 8 of 61

Kali Linux 1.0.8 fdf3:f0c0:2567:7fe4:a00:27ff:fedd:77f4

Fedora 20 host also served as an IPv6 router by using radvd4.

When required (as for example in case where DNS resolving or tracerouting were tested) real IPv6 addresses/”targets”

were used.

1.2 Families of Penetration Testing Tools

During this study, tools from the following families were tested:

 Information Collaboration

 Reconnaissance – port scanning

 Nmap IPv6-specific scripts

 Fingerprinting

 Brute-Forcing

 Remote Shells

 Packet Crafting

 Vulnerability Scanning

 LAN attacks / MITM

 Web Penetration Testing

 Exploitation frameworks

4 http://www.litech.org/radvd/

Page 9 of 61

2 INFORMATION GATHERING

2.1 Robtex

Let's start by trying to check if Robtex5 provides also IPv6-related information. For instance, by checking for ernw.de we

get the results displayed in the next figure. As we can easily observe, IPv6 addresses are also included in the findings

(circled in red)

2.1.1 Conclusion

Robtext can be used (as seen in the figure above) for IPv6 reconnaissance purposes.

5 https://www.robtex.com

Figure 1 Robtex Output "ernw.de"

https://www.robtex.com/

Page 10 of 61

2.2 Shodan

Now, let's continue with Shodan6 for searching about IPv6-related findings. An example output is displayed below:

Figure 2 IPv6 Search Results Shodan

As we can see, there are IPV6-related findings. However, they must be examined and analyzed carefully. For instance,

the displayed choice is a FTP server which, according to its banner, welcomes also IPv6 connections, but when SSH

servers were chosen, ftp servers were also displayed, just because they were configured to use port 22.

2.2.1 Conclusion

So, it seems that some information can be obtained regarding IPv6 from Shodan, but this info does not seem to be

extracted in a very reliable and sophisticated way. Certainly, digging further is required.

6 http://www.shodanhq.com

Page 11 of 61

2.3 Maltego

For Maltego, an open source intelligence and forensics application, we used the community edition version 3.4.0. Again,

let's search for our favorite “target”, www.ernw.de. A sample output is displayed below:

Figure 3 Maltego Target www.ernw.de

As we can see, although we used the provided transformations for obtaining IP addresses, these results are just IPv4

addresses. We don't know if the commercial version offers some IPv6-specific transformations, but, at least the

community one seems that does not offer such.

2.3.1 Conclusion

So, as far as IPv6 is concerned, it seems that Maltego is not an option.

2.4 Dradis

Dradis is an open source framework to enable effective information sharing, especially during security assessments.

The tested version was 2.9.0, running on Kali Linux 1.0.8.

Figure 4 Dradis Nmap Output

Page 12 of 61

As we can see, we can import IPv6 addresses e.g. from nmap outputs for further collaboration. The same applies for

burpsuite.

2.4.1 Conclusion

Dradis can be used for information collaboration in the IPv6 era.

Page 13 of 61

3 DNS ENUMERATION

3.1 Fierce

Regarding DNS enumeration, let's start with the “old” but classic fierce. A sample output search for ernw.de is

displayed below:

$ perl fierce.pl -dns ernw.de

DNS Servers for ernw.de:

ns2.ernw.net

ns1.ernw.net

Trying zone transfer first...

Testing ns2.ernw.net

Request timed out or transfer not allowed.

Testing ns1.ernw.net

Request timed out or transfer not allowed.

Unsuccessful in zone transfer (it was worth a shot)

Okay, trying the good old fashioned way... brute force

Checking for wildcard DNS...

Nope. Good.

Now performing 2898 test(s)...

192.168.99.35 cms.ernw.de

172.31.13.10 crm.ernw.de

172.31.1.10 lists.ernw.de

3.1.1 Conclusion

Based on the above output and taking into account that there are IPv6 addresses which are not displayed, we infer that

IPv6 is not supported by fierce. Not surprising, since fierce is a quite “old” DNS recon script.

3.2 DNSrecon

Now, let's try the same using DNSrecon, which is maintained and updated regularly. For the testing purposes, we

cloned it from github. For using it, python-netaddr.noarch is required.

According to the readme file, since ##Version 0.6.1, ###Date: 1/14/12:

 IPv6 support for ranges in reverse look-up.

 Enhanced parsing of SPF records ranges to cover includes and IPv6.

Page 14 of 61

Let's use it now, “against” ernw.de:

./dnsrecon.py -d ernw.de --lifetime 15

[*] Performing General Enumeration of Domain: ernw.de

[-] DNSSEC is not configured for ernw.de

[*] SOA ns1.ernw.net 62.159.96.78

[*] NS ns1.ernw.net 62.159.96.78

[-] Recursion enabled on NS Server 62.159.96.78

[*] Bind Version for 62.159.96.78 9.6-ESV-R4

[*] NS ns2.ernw.net 212.102.247.186

[-] Recursion enabled on NS Server 212.102.247.186

[*] Bind Version for 212.102.247.186 9.6-ESV-R4

[*] MX mx1.ernw.net 62.159.96.78

[*] MX mx2.ernw.net 212.102.247.186

[*] MX mx1.ernw.net 2003:60:4010:10a0::11

[*] A ernw.de 62.159.96.70

[*] AAAA ernw.de 2003:60:4010:1090::13

[*] TXT ernw.de v=spf1 a mx ptr include:ernw.net -all

[*] Enumerating SRV Records

[-] No SRV Records Found for ernw.de

[*] 0 Records Found

And digging further:

$./dnsrecon.py -r 2003:60:4010:1090::8-2003:60:4010:1090::13

[*] Reverse Look-up of a Range

[*] Performing Reverse Lookup from 2003:60:4010:1090::8 to 2003:60:4010:1090::13

[*] PTR www.ernw.de 2003:60:4010:1090::11

[*] PTR www.troopers.de 2003:60:4010:1090::12

[*] 2 Records Found

./dnsrecon.py -r 2003:60:4010:1090::0/120

[*] Reverse Look-up of a Range

[*] Performing Reverse Lookup from 2003:60:4010:1090:: to 2003:60:4010:1090::ff

[*] PTR www.troopers.de 2003:60:4010:1090::12

[*] PTR www.ng.troopers.de 2003:60:4010:1090::30

[*] PTR www.ng.insinuator.net 2003:60:4010:1090::30

[*] PTR www.ng.ernw.de 2003:60:4010:1090::30

[*] 4 Records Found

Page 15 of 61

3.2.1 Conclusion

So, we can put DNSrecon in our quiver with the IPv6 penetration testing tools.

3.3 Tracerouting - Tcptraceroute

Used system package (since it is a very basic one), there is no information regarding the version.

According to man pages:

-6 Explicitly force IPv6 tracerouting.

Test:

tcptraceroute -6 www.google.com

getopt: invalid option – '6'

NOTE: You get the same error if you use an IPv6 address instead of a hostname.

3.3.1 Conclusion

Although IPv6 is advertised, it doesn't seem to work.

3.4 Traceroute6 / Traceroute

traceroute6 www.google.com

traceroute to www.google.com (2a00:1450:4017:800::1012), 30 hops max, 80 byte packets

 1 2a02:2149:810b:7200:20d:b9ff:fe28:c214 (2a02:2149:810b:7200:20d:b9ff:fe28:c214) 0.491 ms 0.430 ms 0.588 ms

 2 bbras-llu-kln-15L500.forthnet.gr (2a02:2148:77:50:2::5) 36.209 ms 39.093 ms 39.939 ms

 3 te0-1-0-0.distr-kln-01.forthnet.gr (2a02:2148:2:32::22) 41.372 ms 42.096 ms 43.735 ms

 4 BE-2.core-kln-12.forthnet.gr (2a02:2148:2:9::11) 47.616 ms 48.299 ms 49.022 ms

 5 2a02:2148:2:6::22 (2a02:2148:2:6::22) 56.300 ms 61.197 ms 61.938 ms

 6 2001:4860:1:1:0:4d9:0:1 (2001:4860:1:1:0:4d9:0:1) 68.665 ms 50.945 ms 51.564 ms

 7 2001:4860:0:1::617 (2001:4860:0:1::617) 53.609 ms 50.496 ms 51.813 ms

 8 2a00:1450:8000:24::3 (2a00:1450:8000:24::3) 52.440 ms 2a00:1450:4017:800::e (2a00:1450:4017:800::e) 50.945 ms

2a00:1450:8000:24::5 (2a00:1450:8000:24::5) 55.465 ms

traceroute6 --tcp -p 80 www.google.com

traceroute to www.google.com (2a00:1450:4017:800::1014), 30 hops max, 80 byte packets

 1 2a02:2149:8601:1c00:20d:b9ff:fe28:c214 (2a02:2149:8601:1c00:20d:b9ff:fe28:c214) 0.492 ms 0.428 ms 0.586 ms

 2 bbras-llu-kln-12L500.forthnet.gr (2a02:2148:77:50:2::17) 40.596 ms 40.582 ms 41.146 ms

 3 te0-1-0-5.distr-kln-01.forthnet.gr (2a02:2148:2:65::22) 42.024 ms 42.799 ms 43.429 ms

 4 BE-2.core-kln-12.forthnet.gr (2a02:2148:2:9::11) 48.154 ms 49.484 ms 51.188 ms

 5 2a02:2148:2:6::22 (2a02:2148:2:6::22) 56.648 ms 59.024 ms 60.485 ms

 6 2001:4860:1:1:0:4d9:0:1 (2001:4860:1:1:0:4d9:0:1) 69.821 ms 51.040 ms 51.654 ms

 7 2001:4860:0:1::617 (2001:4860:0:1::617) 50.795 ms 46.540 ms 51.746 ms

 8 sof01s01-in-x14.1e100.net (2a00:1450:4017:800::1014) 49.381 ms 46.101 ms 48.100 ms

3.4.1 Conclusion

IPv6 is supported. No advanced features though (i.e. support of IPv6 Extension headers).

Page 16 of 61

3.5 Firewalk

Firewalk7 is an active reconnaissance network security tool that attempts to determine what layer 4 protocols a given IP

forwarding device will pass. Tested was version 5.

Test:

firewalk -i p10p1 2003:0:4702:c402::2 2003:60:4010:11b0::12

Firewalk 5.0 [gateway ACL scanner]

fw_init_network(): target gateway and metric cannot be the same

Total packets sent: 0

Total packet errors: 0

Total packets caught 0

Total packets caught of interest 0

Total ports scanned 0

Total ports open: 0

Total ports unknown: 0

3.5.1 Conclusion

IPv6 is not supported by firewalk.

7 http://packetfactory.openwall.net/projects/firewalk/

http://packetfactory.openwall.net/projects/firewalk/

Page 17 of 61

4 NETWORK / PORT SCANNING

4.1 Unicornscan

Unicornscan8 would be useful for IPv6 network/port scanning due to its very fast performance. Unicornscan version

0.4.7 was tested.

Tests:

[root@localhost ~]# unicornscan -i vboxnet0 -Ir 160 -E fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa

Main [Error cidr.c:263] dns lookup fails for `fdf3': Unknown host

Main [Error getconfig.c:434] cant add workunit for argument `fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa': dont understand address

`f0c0:2567:7fe4:a00:27ff:fe74:ddaa'

what host(s) should i scan?, ive got nothing to do

4.1.1 Conclusion

IPv6 is not supported by Unicornscan.

4.2 Nmap

Nmap9 ("Network Mapper") is a free and open source (license) utility for network discovery and security auditing. Nmap

version 6.46 and 6.47 were tested.

Parameters:

-6, --IPv6 Use IP version 6.

Tests

 -sn performs neighbor solicitation, it does not send an ICMPv6 Echo Request, as it as the case in IPv4. Example:

¬ nmap -sn -6 fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa

 You can define a subnet:

¬ nmap -sn -6 fdf3:f0c0:2567:7fe4:a00:27ff:fed1:d17a/126

 If you want to define a set of targets, you can/must use an input file:

¬ nmap -sn -6 -iL IPv6_targets.txt

8 http://www.unicornscan.org/
9 http://nmap.org/

http://nmap.org/data/COPYING

Page 18 of 61

Starting Nmap 6.46 (http://nmap.org) at 2014-05-31 13:43 EEST

Nmap scan report for fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa

Host is up (0.00087s latency).

MAC Address: 08:00:27:74:DD:AA (Cadmus Computer Systems)

Nmap scan report for fdf3:f0c0:2567:7fe4:a00:27ff:fed1:d17a

Host is up (0.00037s latency).

MAC Address: 08:00:27:D1:D1:7A (Cadmus Computer Systems)

Nmap scan report for fdf3:f0c0:2567:7fe4:a00:27ff:fe6a:ca6a

Host is up (0.00083s latency).

MAC Address: 08:00:27:6A:CA:6A (Cadmus Computer Systems)

Nmap scan report for fdf3:f0c0:2567:7fe4:a00:27ff:fefc:f99a

Host is up (0.00031s latency).

MAC Address: 08:00:27:FC:F9:9A (Cadmus Computer Systems)

Nmap scan report for fdf3:f0c0:2567:7fe4:c0c6:5389:f6e:99c0

Host is up (0.0029s latency).

MAC Address: 08:00:27:8E:96:84 (Cadmus Computer Systems)

Nmap scan report for fdf3:f0c0:2567:7fe4:7874:48a6:2a9d:6a73

Host is up (0.0018s latency).

MAC Address: 08:00:27:4D:30:2F (Cadmus Computer Systems)

Nmap done: 6 IP addresses (6 hosts up) scanned in 0.41 seconds

 Generic (default) port scanning:

nmap -6 -iL IPv6_targets.txt

Starting Nmap 6.46 (http://nmap.org) at 2014-05-31 13:45 EEST

Nmap scan report for fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa

...<snipped for brevity>

49159/tcp open unknown

49160/tcp open unknown

MAC Address: 08:00:27:8E:96:84 (Cadmus Computer Systems)

Nmap scan report for fdf3:f0c0:2567:7fe4:7874:48a6:2a9d:6a73

Host is up (0.0013s latency).

All 1000 scanned ports on fdf3:f0c0:2567:7fe4:7874:48a6:2a9d:6a73 are filtered

MAC Address: 08:00:27:4D:30:2F (Cadmus Computer Systems)

Nmap done: 6 IP addresses (6 hosts up) scanned in 202.44 seconds 10

 You CANNOT define a range of IPv6 addresses, i.e.:

./nmap -sn -6 fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa-ddbb

You receive a “Failed to resolve "fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa-ddbb” error message.

 You CANNOT define a list of IPv6 addresses, i.e.:

nmap -sn -6 fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa,fdf3:f0c0:2567:7fe4:a00:27ff:fed1:d17a

You receive a corresponding “Failed to resolve” message.

4.2.1 Conclusion

Regarding network scanning:

 You CANNOT define a range of IPv6 addresses.

 You CANNOT define a list of IPv6 addresses.

10The same port scanning (TCP SYN scan against 6 targets and 1000 ports per target) took about 156 sec in the default

configuration).

Page 19 of 61

5 IPV6 FINGERPRINTING

5.1 Nmap

From http://nmap.org/book/osdetect-ipv6-methods.html: “Nmap has a similar but separate OS detection engine

specialized for IPv6. At a high level, the technique is the same: send probes, collect responses, and match the set of

responses against a database. The differences are in the specific probes used, and in the way they are matched.

IPv6 OS detection is used just like IPv4. Just use the -6 and -O options together. For example, nmap -6 -O <target>.”

Nmap 6.47 released 366 new OS fingerprints.

Test:

Our targets are:

 Fedora

 Kali

 Windows 7

 OpenBSD 5.5

 FreeBSD 10

 Centos 6.5.

nmap -6 -iL IPv6_targets.txt -O

Results:

Only Windows was detected.

Running: Microsoft Windows Vista|7|2008

OS CPE: cpe:/o:microsoft:windows_vista::sp2 cpe:/o:microsoft:windows_7::sp1

cpe:/o:microsoft:windows_server_2008:r2:sp1 cpe:/o:microsoft:windows_8

OS details: Microsoft Windows Vista SP2 or Windows 7 SP1 or Windows Server 2008 R2 SP1 or Windows 8 Consumer

Preview

In all the other cases:

No OS matches for host (If you know what OS is running on it, see http://nmap.org/submit/.

If we repeat the tests using IPv4, all the OS families are detected (Linux, FreeBSD, OpenBSD, and Windows)

5.1.1 Conclusion

Although IPv6 fingerprinting is supported under IPv6, it is not that effective yet.

5.2 Xprobe2

Xprobe2, used to perform fingerprinting remote TCP/IP stacks was tested in version 0.3.

Test:

xprobe2 fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa

Xprobe2 v.0.3 Copyright (c) 2002-2005 fyodor@o0o.nu, ofir@sys-security.com, meder@o0o.nu

http://nmap.org/book/osdetect-ipv6-methods.html
http://nmap.org/download.html
http://nmap.org/submit/

Page 20 of 61

[+] Target is fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa

Can not resolve fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa: Unknown host

Same for xprobe2 [fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa]

5.2.1 Conclusion

IPv6 is not supported by Xprobe2.

5.3 p0f

p0f11, a tool that utilizes an array of sophisticated, purely passive traffic fingerprinting mechanisms was tested in

version 3.07b.

Tests:

I launched nmap using nmap -sn -6 -iL IPv6_targets.txt to generate some traffic.

Used command: /p0f -f p0f.fp -r nmap-O-IPv6.pcap -o results.txt

5.3.1 Conclusion

 It recognizes IPv6 traffic.

 It seems to recognize Linux (as Linux 2.2.x-3.x) and Windows hosts (as “Windows 7 or 8”), but not BSD hosts.

 More testing on this field is required though using normal traffic, but, definitely, IPv6 fingerprinting is supported.

The only question is how effective it really is.

5.4 Amap

Amap12 is an innovative tool to perform application protocol detection. Tested version was 5.4.

IPv6 is supported. You can use IPv6 by either using the -6 switch, or by using amap6 directly.

Example:

amap6 fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa 22 -bqv

Using trigger file /usr/local/etc/appdefs.trig ... loaded 30 triggers

Using response file /usr/local/etc/appdefs.resp ... loaded 346 responses

Using trigger file /usr/local/etc/appdefs.rpc ... loaded 450 triggers

amap v5.4 (www.thc.org/thc-amap) started at 2014-05-31 18:29:38 - APPLICATION MAPPING mode

Total amount of tasks to perform in plain connect mode: 23

Waiting for timeout on 23 connections ...

Protocol on [fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa]:22/tcp matches ssh - banner: SSH-2.0-OpenSSH_6.4\r\nProtocol

mismatch.\n

Protocol on [fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa]:22/tcp matches ssh-openssh - banner: SSH-2.0-OpenSSH_6.4\r\nProtocol

mismatch.\n

amap v5.4 finished at 2014-05-31 18:29:44

Second test: Used as an input file in an Nmap machine readable outputfile to read ports from. This file was produced

for our targets using nmap -oM option.

11 http://lcamtuf.coredump.cx/p0f3
12 https://www.thc.org/thc-amap

http://lcamtuf.coredump.cx/p0f3/

Page 21 of 61

Result:

Amap -6 or amap6 were not able to use this file properly (e.g. Warning: Could not connect (unreachable) to

[[fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa]]:22/tcp, disabling port (EUNKN)).

5.4.1 Conclusion

There shouldn't be any problem by using amap/amap6 with IPv6 when you use just a single address as an input. Its

detection performance does not depend on layer-3 and hence, it should be the same as using IPv4. However, its creator,

Marc Heuse, recommended amap just for UDP IPv6 scans only. Otherwise, it is considered outdated. Moreover, when

you try to read the addresses/ports from an nmap machine readable output file (produced using nmap -oM), this is not

performed properly and the service fingerprint fails.

Page 22 of 61

6 BRUTE-FORCING

6.1 Hydra

Hydra13 is a very fast network logon cracker that supports many different services. Hydra was tested in version 8.1-dev.

Parameters:

-6 prefer IPv6 addresses

Examples:

 Simple usage:

hydra -6 fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa -l root -p mypassword ssh

Hydra v8.1-dev (c) 2014 by van Hauser/THC & David Maciejak - Please do not use in military or secret service organizations, or

for illegal purposes.

Hydra (http://www.thc.org/thc-hydra) starting at 2014-06-18 13:01:17

[WARNING] Many SSH configurations limit the number of parallel tasks, it is recommended to reduce the tasks: use -t 4

[DATA] max 1 task per 1 server, overall 1 tasks, 1 login try (l:1/p:1), ~1 try per task

[DATA] attacking service ssh on port 22

[22][ssh] host: fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa login: root password: mypassword

1 of 1 target successfully completed, 1 valid password found

Hydra (http://www.thc.org/thc-hydra) finished at 2014-06-18 13:01:17

 Read the targets from a file:

hydra -6 -M /root/IPv6_targets.txt -l root -p atlas930 ssh

Hydra v8.1-dev (c) 2014 by van Hauser/THC & David Maciejak - Please do not use in military or secret service organizations, or

for illegal purposes.

Hydra (http://www.thc.org/thc-hydra) starting at 2014-06-18 13:02:58

[WARNING] Many SSH configurations limit the number of parallel tasks, it is recommended to reduce the tasks: use -t 4

[DATA] max 1 task per 6 servers, overall 6 tasks, 1 login try (l:1/p:1), ~1 try per task

[DATA] attacking service ssh on port 22

[ERROR] could not resolve address: fdf3

[ERROR] could not resolve address: f0c0

[ERROR] could not resolve address: 7fe4

[ERROR] could not resolve address: a00

[ERROR] could not resolve address: 27ff

[ERROR] unknown address string size!

[ERROR] unknown address string size!

[ERROR] could not connect to ssh://(null):22

[ERROR] unknown address string size!

[ERROR] unknown address string size!

[ERROR] could not connect to ssh://(null):2567

[ERROR] could not connect to ssh://0.0.10.7:7

[ERROR] unknown address string size!

[ERROR] unknown address string size!

[ERROR] could not connect to ssh://(null):22

[ERROR] unknown address string size!

[ERROR] unknown address string size!

[ERROR] could not connect to ssh://(null):27

[ERROR] unknown address string size!

13 Website: https://www.thc.org/thc-hydra

https://www.thc.org/thc-hydra/

Page 23 of 61

[ERROR] could not connect to ssh://(null):22

0 of 6 targets completed, 0 valid passwords found

[ERROR] 6 targets did not resolve or could not be connected

Hydra (http://www.thc.org/thc-hydra) finished at 2014-06-18 13:02:59

6.1.1 Conclusion

Hydra partially supports IPv6. You can define a single IPv6 target using -6, but you cannot define a list of targets in a file

using -M. No options for adding IPv6 Extension headers or other IPv6-related capabilities (e.g. for evading purposes).

6.2 Medusa

Medusa14 is intended to be a speedy, massively parallel, modular, login brute-forcer. Version 2.1.1 was tested.

There is no option/parameter to enable IPv6.

Test:

medusa -h fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa -u root -p pass -M ssh

Medusa v2.1.1 [http://www.foofus.net] (C) JoMo-Kun / Foofus Networks <jmk@foofus.net>

NOTICE: ssh.mod: failed to connect, port 22 was not open on fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa

6.2.1 Conclusion

IPv6 is not supported by medusa.

6.3 Ncrack

Ncrack15 is a high-speed network authentication cracking tool. Tested version was 0.4ALPHA

Parameters:

-6 Enable IPv6 scanning

Warning: This option was just added and it is currently experimental, so please notify us for any problems and bugs related to it.

The command syntax is the same as usual except that you also add the -6 option. Of course, you must use IPv6 syntax if you specify

an address rather than a hostname. An address might look like 3ffe:7501:4819:2000:210:f3ff:fe03:14d0, so hostnames are

recommended. The output looks the same as usual, with the IPv6 address on the “Discovered credentials” line being the only IPv6

give away.

In reality it doesn't seem to work (an “invalid port number” error message is displayed).

6.3.1 Conclusion

Although it is claimed to be supported, at least experimentally, IPv6 does not seem to work.

14 Website: http://foofus.net/goons/jmk/medusa/medusa.html
15 http://nmap.org/ncrack/

http://foofus.net/goons/jmk/medusa/medusa.html

Page 24 of 61

7 PACKET CRAFTING

7.1 Hping

Hping16 assembles and sends custom ICMP, UDP, or TCP packets and then displays any replies. The tested version was

20051105-20.

hping 3.0.0-alpha-1 ($Id: release.h,v 1.4 2004/04/09 23:38:56 antirez Exp $)

hping fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa

Unable to resolve 'fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa

7.1.1 Conclusion

No support for IPv6.

7.2 Nping

From the man pages: “Nping17 is an open-source tool for network packet generation, response analysis and response

time measurement. Nping allows users to generate network packets of a wide range of protocols, letting them tune

virtually any field of the protocol headers. While Nping can be used as a simple ping utility to detect active hosts, it can

also be used as a raw packet generator for network stack stress tests, ARP poisoning, Denial of Service attacks, route

tracing, and other purposes.” The test version was 0.6.46 & 0.6.47.

Parameters:

-6, --IPv6 Use IP version 6.

--dest-ip Set destination IP address.

(Used as an alternative to {target specification}).

--hop-limit Set hop limit (same as IPv4 TTL).

--traffic-class <class> Set traffic class.

 --flow <label> Set flow label.

PAYLOAD OPTIONS:

 --data <hex string> : Include a custom payload.

 --data-string <text> : Include a custom ASCII text.

 --data-length <len> : Include <len> random bytes as payload.

16 http://sectools.org/tool/hping/
17 http://nmap.org/nping/

Page 25 of 61

Test:

nping -6 --dest-ip fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa --tcp-connect -p 22

Result:

nping -6 --dest-ip fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa --tcp-connect -p 22

Starting Nping 0.6.46 (http://nmap.org/nping) at 2014-05-31 21:13 EEST

SENT (0.0024s) Starting TCP Handshake > fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa:22

RECV (0.0029s) Handshake with fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa:22 completed

SENT (1.0041s) Starting TCP Handshake > fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa:22

RECV (1.0051s) Handshake with fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa:22 completed

SENT (2.0057s) Starting TCP Handshake > fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa:22

RECV (2.0063s) Handshake with fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa:22 completed

SENT (3.0075s) Starting TCP Handshake > fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa:22

RECV (3.0080s) Handshake with fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa:22 completed

SENT (4.0090s) Starting TCP Handshake > fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa:22

RECV (4.0094s) Handshake with fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa:22 completed

 Max rtt: 1.035ms | Min rtt: 0.454ms | Avg rtt: 0.640ms

TCP connection attempts: 5 | Successful connections: 5 | Failed: 0 (0.00%)

Nping done: 1 IP address pinged in 4.01 seconds

However, when trying to use a comma-separated list, an error is generated. Moreover, subnets (e.g. /64) are not

allowed, as well there is no option to read the IPv6 addresses from an input file.

No support for IPv6 Extension headers either.

7.2.1 Conclusion

Very limited (basic) IPv6 support. If arbitrary packet crafting is required, the use of Scapy is highly recommended,

because it is much more flexible.

7.3 Scapy

Scapy18 is a powerful interactive packet manipulation program.

7.3.1 Conclusion

Very good support of IPv6, not all the latest IPv6 Extension headers or protocols are supported though (e.g. MLDv2).

18 http://www.secdev.org/projects/scapy/

Page 26 of 61

8 REMOTE SHELLS

8.1 Ncat

Ncat19 is a feature-packed networking utility which reads and writes data across networks from the command line.

Tested version was 6.47.

Parameters:

-6, --IPv6 Use IP version 6.

IPv6 is supported.

Examples:

Listen mode: ncat -6 -l

Connect mode: ncat -6 fdf3:f0c0:2567:7fe4:800:27ff:fe00:0

Default port: 31337

It provides you a typical non-interactive shell.

Transferring a file:

$ ncat -l -6 > test.txt

$ ncat -6 fdf3:f0c0:2567:7fe4:800:27ff:fe00:0 < test.txt

Or, to exec commands remotely:

$ ncat -l -6 -e /bin/sh

An example output of Ncat unencrypted communication:

Figure 5 Ncat Unencrypted Communication – Example 1

However, ncat supports many handy features, and one of them is to use SSL for encrypting the communication channel

(using the switch –ssl).

19 http://nmap.org/ncat/

Page 27 of 61

Another example output of Ncat encrypted communication is displayed below:

Figure 6 Ncat Unencrypted Communication – Example 2

8.1.1 Conclusion

Ncat works without problems, using IPv6. It also supports some handy features, like SSL encryption, even over IPv6.

Page 28 of 61

9 LAN / MITM ATTACKS & OTHER

9.1 NSE Scripts

Nmap Scripting Engine (NSE)20 scripts provide different options, introduced below. Let's start with the IPv6-specific

NSE scripts provided by nmap.

Script location:

/usr/local/share/nmap/scripts/

Information obtained from:

 http://nmap.org/nsedoc/

NSE Scripts specific for IPv6

dns-ip6-arpa-scan Performs a quick reverse DNS lookup of an IPv6 network using a

technique which analyzes DNS server response codes to dramatically

reduce the number of queries needed to enumerate large networks.

ipv6-node-info Obtains hostnames, IPv4 and IPv6 addresses through IPv6 Node

Information Queries.

ipv6-ra-flood Generates a flood of Router Advertisements (RA) with random source

MAC addresses and IPv6 prefixes. Computers, which have stateless auto

configuration enabled by default (every major OS), will start to compute

IPv6 suffix and update their routing table to reflect the accepted

announcement. This will cause 100% CPU usage on Windows and

platforms, preventing to process other application requests.

targets-ipv6-multicast-echo Sends an ICMPv6 echo request packet to the all-nodes link-local

multicast address (ff02::1) to discover responsive hosts on a LAN without

needing to individually ping each IPv6 address.

targets-ipv6-multicast-invalid-dst Sends an ICMPv6 packet with an invalid extension header to the all-

nodes link-local multicast address (ff02::1) to discover (some) available

hosts on the LAN. This works because some hosts will respond to this

probe with an ICMPv6 Parameter Problem packet.

targets-ipv6-multicast-mld Attempts to discover available IPv6 hosts on the LAN by sending an MLD

(multicast listener discovery) query to the link-local multicast address

(ff02::1) and listening for any responses. The query's maximum response

delay set to 0 to provoke hosts to respond immediately rather than

waiting for other responses from their multicast group.

targets-ipv6-multicast-slaac Performs IPv6 host discovery by triggering stateless address auto-

configuration (SLAAC).

20 http://nmap.org/book/nse-scripts.html

http://nmap.org/nsedoc/
http://nmap.org/nsedoc/scripts/dns-ip6-arpa-scan.html
http://nmap.org/nsedoc/scripts/ipv6-node-info.html
http://nmap.org/nsedoc/scripts/ipv6-ra-flood.html
http://nmap.org/nsedoc/scripts/targets-ipv6-multicast-echo.html
http://nmap.org/nsedoc/scripts/targets-ipv6-multicast-invalid-dst.html
http://nmap.org/nsedoc/scripts/targets-ipv6-multicast-mld.html
http://nmap.org/nsedoc/scripts/targets-ipv6-multicast-slaac.html

Page 29 of 61

dhcp6 Minimalistic DHCP6 (Dynamic Host Configuration Protocol for IPv6)

implementation supporting basic DHCP6 Solicit requests The library is

structured around the following classes:

 DHCP6.Option - DHCP6 options encoders (for requests) and

decoders (for responses).

 DHCP6.Request - DHCP6 request encoder and decoder.

 DHCP6.Response - DHCP6 response encoder and decoder.

 Helper - The helper class, primary script interface.

broadcast-dhcp6-discover

Sends a DHCPv6 request (Solicit) to the DHCPv6 multicast address,

parses the response, then extracts and prints the address along with any

options returned by the server.

NSE scripts that also provide information regarding IPv6:

address-info Shows extra information about IPv6 addresses, such as embedded MAC or

IPv4 addresses when available.

afp-serverinfo Shows AFP server information. This information includes the server's

hostname, IPv4 and IPv6 addresses, and hardware type (for example

Macmini or MacBookPro).

resolveall Resolves hostnames and adds every address (IPv4 or IPv6, depending on

Nmap mode) to Nmap's target list. This differs from Nmap's normal host

resolution process, which only scans the first address (A or AAAA

record) returned for each host name.

Let's see some tests.

Tests:

 IPv6-node-info

Obtains hostnames, IPv4 and IPv6 addresses through IPv6 Node Information Queries. IPv6 Node Information Queries

are defined in RFC 462021.

21 https://tools.ietf.org/html/rfc4620

http://nmap.org/nsedoc/lib/dhcp6.html
http://nmap.org/nsedoc/scripts/broadcast-dhcp6-discover.html
http://nmap.org/nsedoc/scripts/address-info.html
http://nmap.org/nsedoc/scripts/afp-serverinfo.html
http://nmap.org/nsedoc/scripts/resolveall.html
http://nmap.org/nsedoc/scripts/ipv6-node-info.html

Page 30 of 61

Figure 7 RFC 4620

There are three useful types of queries:

qtype=2: Node Name

qtype=3: Node Addresses

qtype=4: IPv4 Addresses

Command example:

nmap -6 fdf3:f0c0:2567:7fe4:a00:27ff:fed1:d17a --script ipv6-node-info --script-args='interface=vboxnet0' -sn

And this is the information obtained by an OpenBSD system (we displayed it as a Wireshark output).

Page 31 of 61

Figure 8 Wireshark Output nmap scan

As we can see, OpenBSD 5.5 happily responds to these queries and provides some information.

 IPv6-ra-flood

Floods the local link with Router Advertisements (RA) with random source MAC addresses and IPv6 prefixes. It

increases the CPU load significantly on all the targeted OS making them quite unresponsive. It is quite interesting that

this technique can still be effective.

nmap -6 --script ipv6-ra-flood.nse --script-args 'interface=vboxnet0'

Figure 9 Flood router impact on a Windows 7 Operating System

 Targets-ipv6-multicast-echo

Sends an ICMPv6 echo request packet to the all-nodes link-local multicast address (ff02::1).

http://nmap.org/nsedoc/scripts/ipv6-ra-flood.html
http://nmap.org/nsedoc/scripts/targets-ipv6-multicast-echo.html

Page 32 of 61

nmap -6 --script=targets-ipv6-multicast-echo.nse --script-args 'newtargets,interface=vboxnet0'

Starting Nmap 6.46 (http://nmap.org) at 2014-05-31 17:46 EEST
Pre-scan script results:

| targets-ipv6-multicast-echo:

| IP: fdf3:f0c0:2567:7fe4:a00:27ff:fed1:d17a MAC: 08:00:27:d1:d1:7a IFACE: vboxnet0
| IP: fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa MAC: 08:00:27:74:dd:aa IFACE: vboxnet0

|_ IP: fdf3:f0c0:2567:7fe4:481e:249a:1d4f:77ec MAC: 08:00:27:6a:ca:6a IFACE: vboxnet0

... etc

Only Linux and OpenBSD (!) systems respond (not Windows and FreeBSD). Not very effective technique on its own.

 Targets-ipv6-multicast-invalid-dst

It sends an ICMPv6 packet with an invalid extension header to the all-nodes link-local multicast address (ff02::1) to

discover (some) available hosts on the LAN. This works because some hosts will respond to this probe with an ICMPv6

Parameter Problem packet.

nmap -6 --script=targets-ipv6-multicast-invalid-dst.nse --script-args 'newtargets,interface=vboxnet0' -sP

Starting Nmap 6.46 (http://nmap.org) at 2014-05-31 17:48 EEST

Pre-scan script results:
| targets-ipv6-multicast-invalid-dst:

| IP: fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa MAC: 08:00:27:74:dd:aa IFACE: vboxnet0

| IP: fdf3:f0c0:2567:7fe4:481e:249a:1d4f:77ec MAC: 08:00:27:6a:ca:6a IFACE: vboxnet0
| IP: fdf3:f0c0:2567:7fe4:a00:27ff:fed1:d17a MAC: 08:00:27:d1:d1:7a IFACE: vboxnet0

|_ IP: fdf3:f0c0:2567:7fe4:c099:d19b:fbd4:aadb MAC: 08:00:27:8e:96:84 IFACE: vboxnet0

Four systems responded (Fedora, Centos, OpenBSD and Windows 8.1). Slightly more effective technique than targets-

ipv6-multicast-echo. Similar results to alive6 of the thc-ipv6 attack toolkit.

An example of the sent packets is displayed in the Wireshark output shown below:

Figure 10 Wireshark Output targets-ipv6-multicast-invalid-dst

 Targets-ipv6-multicast-mld

It attempts to discover available IPv6 hosts on the LAN by sending an MLD (multicast listener discovery) query to the

link-local multicast address (ff02::1) and listening for any responses.

nmap -6 --script=targets-ipv6-multicast-mld.nse --script-args 'interface=vboxnet0'

http://nmap.org/nsedoc/scripts/targets-ipv6-multicast-invalid-dst.html
http://nmap.org/nsedoc/scripts/targets-ipv6-multicast-echo.html
http://nmap.org/nsedoc/scripts/targets-ipv6-multicast-echo.html

Page 33 of 61

An example output for the sent packet is displayed below:

Figure 11 Targets-ipv6-multicast-mld

Unfortunately, it doesn't seem to work effectively.

 Targets-ipv6-multicast-slaac

This script attempts to perform IPv6 host discovery by triggering stateless address auto-configuration (SLAAC). It

doesn't seem to work, though.

 Resolveall

Resolves hostnames and adds every address (IPv4 or IPv6, depending on Nmap mode) to Nmap's target list.

Command:

nmap -6 --script=resolveall --script-args=newtargets,resolveall.hosts={www.ernw.de}

Starting Nmap 6.47 (http://nmap.org) at 2014-09-02 23:22 EEST

Pre-scan script results:

| resolveall:

| Host 'www.ernw.de' resolves to:

| 2003:60:4010:1090::11

|_ Successfully added 1 new targets

Note: Host seems down. If it is really up, but blocking our ping probes, try -Pn

Nmap done: 1 IP address (0 hosts up) scanned in 8.12 seconds

9.1.1 Conclusion

Several NSE scripts either support IPv6 or they are IPv6-specific. Some of them do not appear to work properly. From

the rest, the most interesting/effective ones are the following:

 IPv6-ra-flood (quite effective even against the latest OS).

 Targets-ipv6-multicast-invalid-dst (this produces similar results to alive6 of the thc-ipv6 attacking toolkit).

 Targets-ipv6-multicast-echo

 IPv6-node-info

 Resolveall

http://nmap.org/nsedoc/scripts/resolveall.html
http://nmap.org/nsedoc/scripts/resolveall.html

Page 34 of 61

9.2 Ettercap

Ettercap22 is a comprehensive suite for man in the middle attacks. The tested version was 0.8.0.

 IPv6 support was added at version 0.7.5.

 DNS spoofing for IPv6 addresses plugin was added in version 0.8.0.

NOTE:

IPv6 is not supported out-of-the-box in the rpm package. In the source code, you must enable it: (Edit

build/CmakeCache.txt and change ENABLE_IPV6:BOOL=OFF to ENABLE_IPV6:BOOL=ON).

Test:

/usr/local/bin/ettercap -i vboxnet0 -T //fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa/ //fdf3:f0c0:2567:7fe4:a00:27ff:fed1:d17a/

ettercap 0.8.0 copyright 2001-2013 Ettercap Development Team

Listening on:

vboxnet0 -> 0A:00:27:00:00:00

 192.168.56.1/255.255.255.0

 fe80::800:27ff:fe00:0/64

 fdf3:f0c0:2567:7fe4:800:27ff:fe00:0/64

SSL dissection needs a valid 'redir_command_on' script in the etter.conf file

Privileges dropped to UID 65534 GID 65534...

plugin ec_sslstrip.so cannot be loaded...

 32 plugins

 42 protocol dissectors

 57 ports monitored

16074 mac vendor fingerprint

1766 tcp OS fingerprint

2182 known services

Randomizing 255 hosts for scanning...

Scanning the whole netmask for 255 hosts...

* |==>| 100.00 %

Scanning for merged targets (2 hosts)...

* |==>| 100.00 %

0 hosts added to the hosts list...

Starting Unified sniffing...

Text only Interface activated...

Not sure how to launch an IPv6 MITM attack using ettercap. We didn't find any related MITM module in the man pages.

We pinged the hosts using IPv6 and we did not get anything in real time (just IPv4). But when we press l (list hosts), IPv6

hosts are listed:

Figure 12 IPv6 Hosts List Ettercap

IPv6-related Filters:

 DNS spoofing for IPv6 addresses

 Support for IPv4 and IPv6 Tunnels

22 http://ettercap.github.io/ettercap/

Page 35 of 61

9.2.1 Conclusion

Although ettercap supports IPv6 addresses, critical modules (like MITM attacks) do not seem to be implemented yet.

9.3 Cain & Abel

Cain & Abel23, a password recovery tool for Windows was tested with version 4.9.56 on Windows 8.1.

Ping/ping6 traffic was sent to Cain while its sniffer was running, but just the IPv4 address of the sender was captured.

9.3.1 Conclusion

IPv6 is not supported.

9.4 Net-snmp

Net-SNMP24 is a suite of applications used to implement SNMPv1, SNMPv2c and SNMPv3 using both IPv4 and

IPv6.Tested version was 5.7.3.pre5.

When you compile it, you need to enable IPv6 support (not enabled by default).

Example:

snmpwalk -Os -c public -v 1 fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa system

The SNMP operation was confirmed with Wireshark.

Figure 13 Wireshark Output SNMP Walk

9.4.1 Conclusion

IPv6 is supported by Net-snmp, but you must compile it with this option enabled (it is not by default).

23 http://www.oxid.it/cain.html
24 http://www.net-snmp.org/

Page 36 of 61

10 VULNERABILTY SCANNERS

10.1 Nessus

The market defining vulnerability scanning solution was tested version with Nessus Home, Engine: 5.2.7.

Web UI:

 2.3.8 (master #98), Plugins

Last Updated:

 August 28, 2014

How to Define your IPv6 Targets:

Figure 14 Nessus IPv6 Targets

Page 37 of 61

Let's see, using a Wireshark output, the methods by Nessus for IPv6 discovery:

Figure 15 Wireshark Output ICMPv6 Echo Request

As we can see, ICMPv6 Echo Request plus UDP Port Scanning at port 42 are used! Moreover, port scanning is also

launched by the IPv6 host discovery.

Results:

Figure 16 Nessus IPv6 Host Discovery

As we can see, all targets were identified.

Page 38 of 61

Some more detailed results are displayed below:

Figure 17 Detailed Nessus Output IPv6 Host Discovery

Other ways to define your IPv6 targets:

Link local addresses should be defined as targets like this: fe80::800:27ff:fe00:0%eth1.

When a /64 network is defined (e.g. fdf3:f0c0:2567:7fe4::/64)…

Figure 18 Nessus Invalid Target Settings

…we get an error message (“Invalid Target setting”).

Similar errors we get when:

 A /64 network is defined as fdf3:f0c0:2567:7fe4::0/64

 Ranges of addresses are defined, e.g. fdf3:f0c0:2567:7fe4:a00:27ff:fe74:dd00 – fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddff

or fdf3:f0c0:2567:7fe4:a00:27ff:fe74:dd00-ddff

Page 39 of 61

IPv6 Plugins

Let's examine if IPv6-related plugins are supported in Nessus:

After selecting a policy and then “Plugins” from the left pane.

Figure 19 Advanced Search Nessus

We get a plenty of IPv6-related plugins.

Figure 20 Nessus Plugins

And also some nice recommendations.

Figure 21 Nessus Enumeration IPv6 Interfaces via SSH

Page 40 of 61

Note:

Nessus under Windows:

“Nessus works under *nix platforms with IPv6, but the windows stack doesn't support the features needed for nessus to work.” [1]

10.1.1 Conclusion

Nessus supports IPv6 addresses as targets, but NOT using IPv6 prefixes or IPv6 ranges. The IPv6 host discovery module

does not use many methods to discovery IPv6 hosts (e.g. IPv6 datagrams with erroneous parameters or extension

headers, etc.). However, it incorporates several IPv6-related vulnerability discovery plugins. To sum-up, Nessus can be

used against IPv6 networks but it is recommended that during the discovery phase more specialized tools, like the thc-

ipv6 attack toolkit, should also be used.

Page 41 of 61

11 WEB PENETRATION TESTING

11.1 BurpSuite

Burp Suite25 is an integrated platform for performing security testing of web applications. The tested version was 1.6,

free edition.

Tests:

As a target, an IPv6-only (very basic) website was used.

Results:

By configuring the web browser to use 127.0.0.1:8080, burpsuite fetches and spiders IPv6 targets:

Figure 22 Burp Suite IPv6 Targets

When you use IPv6 local host (::1 or [::1]) at the proxy settings of the web browser, you get a “server not found” error

message at your web browser. No big deal to use IPv4 localhost address for this purpose though!

11.1.1 Conclusion

Burpsuite can spider IPv6 targets smoothly!

11.2 ZAPROXY

The OWASP Zed Attack Proxy (ZAP)26 is an easy to use integrated penetration testing tool for finding vulnerabilities in

web applications. Tested version was 2.3.1.

25 http://portswigger.net/index.html
26 https://code.google.com/p/zaproxy/

http://portswigger.net/index.html

Page 42 of 61

Results:

IPv6 addresses cannot be attacked directly:

Figure 23 Zaproxy IPv6 URL To Attack

When used as a proxy, still an IPv6 address cannot be fetched:

Figure 24 Zaproxy Invalid Address Proxy Error

11.2.1 Conclusion

IPv6 is not supported by ZAP.

11.3 Nikto

Nikto27 is an Open Source (GPL) web server scanner which performs comprehensive tests against web servers for

multiple items. Tested version was 2.1.5.

27 https://www.cirt.net/Nikto2

http://www.gnu.org/licenses/licenses.html#GPL
https://www.cirt.net/Nikto2

Page 43 of 61

Test:

[aatlas@localhost nikto-2.1.5]$ perl nikto.pl -host http://[fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa]

- Nikto v2.1.5

+ ERROR: Cannot resolve hostname '[fdf3'

+ 0 host(s) tested

11.3.1 Conclusion

IPv6 is not supported by Nikto.

11.4 Skipfish

Skipfish28 is an active web application security reconnaissance tool, tested with version 2.10b.

There is no optional parameter to define IPv6 addresses (like -6).

Test:

./skipfish -o output_dir2 http://[fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa]

skipfish web application scanner - version 2.10b

[!] WARNING: Wordlist '/dev/null' contained no valid entries.

[-] PROGRAM ABORT : Scan target 'http://[fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa]' is not a valid absolute URL.

Stop location : main(), src/skipfish.c:736

11.4.1 Conclusion

IPv6 is not supported by skipfish.

11.5 Sqlmap

Sqlmap29 is an open source penetration testing tool that automates the process of detecting and exploiting SQL injection

flaws and taking over of database servers. Tested version was sqlmap/1.0-dev-nongit-20140823.

Sqlmap supports IPv6 out-of-the-box.

Example:

$ python sqlmap.py -u http://[fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa]

...<snipped for brevity> ...

[*] starting at 14:28:35

[14:28:35] [INFO] testing connection to the target URL

[14:28:35] [WARNING] the web server responded with an HTTP error code (403) which could interfere with the results of the tests

[14:28:35] [INFO] testing if the target URL is stable. This can take a couple of seconds

[14:28:37] [INFO] target URL is stable

[14:28:37] [CRITICAL] no parameter(s) found for testing in the provided data (e.g. GET parameter 'id' in

'www.site.com/index.php?id=1')

[14:28:37] [WARNING] HTTP error codes detected during run:

403 (Forbidden) - 2 times

28 https://code.google.com/p/skipfish

29 sqlmap/1.0-dev-nongit-20140823

https://code.google.com/p/skipfish/

Page 44 of 61

[*] shutting down at 14:28:37

Figure 25 Wireshark Output SqlMap

11.5.1 Conclusion

IPv6 is supported by sqlmap.

11.6 sqlninja

Sqlninja30 is a SQL server injecting and takeover tool. The version tested was the latest dev version download in 23rd

August 2014 via svn.

The following sqlninja configurations were tested:

<...snipped for brevity...>

--httprequest_start--

GET http://[fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa]/checkid.asp?id=1;__SQL2INJECT__ HTTP/1.0

Host: [fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa]

<...snipped for brevity...>

lhost = [fdf3:f0c0:2567:7fe4:800:27ff:fe00:0]

<...snipped for brevity...>

Results:

./sqlninja -m t

Sqlninja rel. 0.2.ff-svn <http://sqlninja.sf.net>

(C) 2006-2014 icesurfer & nico

[+] Parsing sqlninja.conf...

[-] host not defined in sqlninja.conf

Now, trying the following:

<...snipped for brevity...>

--httprequest_start--

GET http://[fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa]/checkid.asp?id=1;__SQL2INJECT__ HTTP/1.0

Host: fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa

<...snipped for brevity...>

Local host: your IP address (for backscan and revshell modes)

30 http://sqlninja.sourceforge.net/

Page 45 of 61

lhost = [fdf3:f0c0:2567:7fe4:800:27ff:fe00:0]

<...snipped for brevity...>

We get again:

$./sqlninja -m t

Sqlninja rel. 0.2.ff-svn <http://sqlninja.sf.net>

(C) 2006-2014 icesurfer & nico

[+] Parsing sqlninja.conf...

[-] host not defined in sqlninja.conf

Same results if:

<...snipped for brevity...>

--httprequest_start--

GET http://[fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa]/checkid.asp?id=1;__SQL2INJECT__ HTTP/1.0

Host: [fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa]

<...snipped for brevity...>

Local host: your IP address (for backscan and revshell modes)

lhost = fdf3:f0c0:2567:7fe4:800:27ff:fe00:0]

<...snipped for brevity...>

However, if you change the GET request like:

<...snipped for brevity...>

--httprequest_start--

GET http://fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa/checkid.asp?id=1;__SQL2INJECT__ HTTP/1.0

<...snipped for brevity...>

You get:

$./sqlninja -m t

Sqlninja rel. 0.2.ff-svn <http://sqlninja.sf.net>

(C) 2006-2014 icesurfer & nico

[+] Parsing sqlninja.conf...

[+] Loading extraction module: lib/getdata_time.pl

[+] Port 80. Assuming cleartext

[+] Target is: fdf3:80

[+] Checking that server is responding...

Error: could not create socket to fdf3:8

A note about perl and IPv6 support, according to: http://www.perl.org/about/whitepapers/perl-ipv6.html :

How to use both IPv4 and IPv6 networks from Perl:

To enable IPv6 in Perl, replace any use of IO::Socket::INET with IO::Socket::IP and you will be able to use both IPv4 and

IPv6. Perl 5.14 has the full set of IPv6 functions as part of its core Socket module.

The Perl community is currently in the process of converting older modules to use this. If you use a module which has

not been converted please report it to the module author.

The IO::Socket::IP class provides a general-purpose socket that can provide TCP connections or UDP packets using

either IPv4 or IPv6. It is an API-compatible replacement for its IPv4-only predecessor, IO::Socket::INET.

Still not able to use IPv6 with sqlninja, although the aforementioned perl module is installed:

 # yum list installed perl*Socket*

Installed Packages

perl-IO-Socket-IP.noarch 0.30-2.fc20 @updates

perl-IO-Socket-SSL.noarch 1.955-2.fc20 @updates

perl-Socket.x86_64 1:2.014-1.fc20 @updates

http://www.perl.org/about/whitepapers/perl-ipv6.html
https://metacpan.org/module/IO::Socket::IP
http://en.wikipedia.org/wiki/Ipv4
http://en.wikipedia.org/wiki/IPv6
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/UDP_packet

Page 46 of 61

My perl version is:

$perl --version

This is perl 5, version 18, subversion 2 (v5.18.2) built for x86_64-linux-thread-multi

11.6.1 Conclusion

Seems that sqlninja does not support IPv6.

11.7 w3af

w3af31 is a Web Application Attack and Audit Framework. Tested version was 1.6.0.4, 19th August revision.

Figure 26 w3af Invalid URL Error

11.7.1 Conclusion

w3af does not support IPv6. This was actually confirmed implicitly when an e-mail was sent to the w3af mailing list.

11.8 Arachni

Arachni32 is an Open Source, feature-full, modular, high-performance Ruby framework aimed towards helping

penetration testers and administrators evaluate the security of web applications. Arachni has been tested with Kali on

version 0.4.6.

31 http://w3af.org/
32 http://www.arachni-scanner.com/

Page 47 of 61

Tests:

$arachni_web

Default Port: 9292

Default credentials

Administrator account:

 E-mail: admin@admin.admin

 Password: administrator

Regular user account

 E-mail: user@user.user

 Password: regular_user

Figure 27 ArachniIPv6 URL

Results:

Figure 28 Arachni Issues

11.8.1 Conclusion

Arachni supports IPv6.

Page 48 of 61

12 EXPLOITATION FRAMEWORKS

12.1 Metasploit

Metasploit33, the famous penetration testing software was used with version 4.9.3-1 [core:4.9 api:1.0] and version

4.10.0-2014082003 [core:4.10.0.pre.2014082003 api:1.0.0].

Metasploit IPv6-related modules are given in Metasploit Modules. As we can see, several ipv6-related payloads are

supported (tcp, http/https, perl, php, reverse or bind, etc.). Moreover, the following auxiliary modules are supported:

auxiliary/gather/dns_info normal DNS Basic Information Enumeration

auxiliary/gather/dns_srv_enum normal DNS Common Service Record Enumeration

auxiliary/scanner/discovery/ipv6_multicast_ping normal IPv6 Link Local/Node Local Ping Discovery

auxiliary/scanner/discovery/ipv6_neighbor normal IPv6 Local Neighbor Discovery

auxiliary/scanner/discovery/ipv6_neighbor_router_advertisement normal IPv6 Local Neighbor Discovery Using Router

Advertisement

Now, let's examine if any module (exploit, auxiliary, etc.) can be used against a target using IPv6 addresses:

Example 1:

 SSH users enumeration

msf > use auxiliary/scanner/ssh/ssh_enumusers

msf auxiliary(ssh_enumusers) > set RHOSTS fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa
RHOSTS => fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa

msf auxiliary(ssh_enumusers) > set USER_FILE /tmp/users.txt

USER_FILE => /tmp/users.txt
msf auxiliary(ssh_enumusers) > exploit

[*] fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa:22 - SSH - Checking for false positives

[*]fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa:22 - SSH - Starting scan
[!] fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa:22 - SSH - User 'root' not found

[!] fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa:22 - SSH - User 'atlas' not found

[!] fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa:22 - SSH - User 'test' not found
[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

The connections where verified by using Wireshark.

Example 2:

 IPv6_multicast_ping

Description:

It sends an ICMPv6 ping request to all default multicast addresses, and wait to see who responds.

msf > use auxiliary/scanner/discovery/ipv6_multicast_ping

msf auxiliary(ipv6_multicast_ping) > set interface vboxnet0
interface => vboxnet0

msf auxiliary(ipv6_multicast_ping) > exploit

[*] Sending multicast pings...
[*] Listening for responses...

[*] |*| fe80::a00:27ff:fe74:ddaa => 08:00:27:74:dd:aa

[*] |*| fe80::a00:27ff:fed1:d17a => 08:00:27:d1:d1:7a
[*] Auxiliary module execution completed

A Wireshark output if the captured packets is displayed below:

33 http://www.metasploit.com/

Page 49 of 61

Figure 29 Wireshark Output Multicast Ping

Example 3:

 IPv6_neighbor

Description:

Enumerate local IPv6 hosts which respond to Neighbor Solicitations with a link-local address.

Basic options:

Name Current Setting Required Description

------ ---------------- -------- -----------

INTERFACE no The name of the interface

PCAPFILE no The name of the PCAP capture file to process

RHOSTS yes The target address range or CIDR identifier

SHOST no Source IP Address

SMAC no Source MAC Address

THREADS 1 yes The number of concurrent threads

TIMEOUT 500 yes The number of seconds to wait for new data

msf auxiliary(ipv6_neighbor) > set RHOSTS fdf3:f0c0:2567:7fe4::/64

RHOSTS => fdf3:f0c0:2567:7fe4::/64

msf auxiliary(ipv6_neighbor) > exploit

[-] Auxiliary failed: Msf::OptionValidateError The following options failed to validate: RHOSTS.

msf auxiliary(ipv6_neighbor) > set RHOSTS fdf3:f0c0:2567:7fe4::0/64

RHOSTS => fdf3:f0c0:2567:7fe4::0/64

msf auxiliary(ipv6_neighbor) > exploit

[-] Auxiliary failed: Msf::OptionValidateError The following options failed to validate: RHOSTS.

msf auxiliary(ipv6_neighbor) > set RHOSTS fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa

RHOSTS => fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa

msf auxiliary(ipv6_neighbor) > exploit

Page 50 of 61

[*] Discovering IPv4 nodes via ARP...

[-] Auxiliary failed: ArgumentError str is not a valid IPV4 address

[-] Call stack:

[-] /opt/metasploit/apps/pro/vendor/bundle/ruby/1.9.1/gems/packetfu-1.1.9/lib/packetfu/protos/ip/header.rb:48:in `read_quad'

[-] /opt/metasploit/apps/pro/vendor/bundle/ruby/1.9.1/gems/packetfu-1.1.9/lib/packetfu/protos/arp/header.rb:141:in

`arp_daddr_ip='

[-] /opt/metasploit/apps/pro/vendor/bundle/ruby/1.9.1/gems/packetfu-1.1.9/lib/packetfu/protos/arp/mixin.rb:31:in `arp_daddr_ip='

[-] /opt/metasploit/apps/pro/msf3/modules/auxiliary/scanner/discovery/ipv6_neighbor.rb:175:in `buildprobe'

[-] /opt/metasploit/apps/pro/msf3/modules/auxiliary/scanner/discovery/ipv6_neighbor.rb:67:in `block in run_batch'

[-] /opt/metasploit/apps/pro/msf3/modules/auxiliary/scanner/discovery/ipv6_neighbor.rb:65:in `each'

[-] opt/metasploit/apps/pro/msf3/modules/auxiliary/scanner/discovery/ipv6_neighbor.rb:65:in `run_batch'

[-] /opt/metasploit/apps/pro/msf3/lib/msf/core/auxiliary/scanner.rb:174:in `block in run'

[-] /opt/metasploit/apps/pro/msf3/lib/msf/core/thread_manager.rb:100:in `call'

[-] /opt/metasploit/apps/pro/msf3/lib/msf/core/thread_manager.rb:100:in `block in spawn'

[*] Auxiliary module execution completed

So, it seems that we cannot use IPv6 scopes, although it is advertise that we can do.

Example 4:

 IPv6_neighbor_router_advertisement

Description:

 Send a spoofed router advertisement with high priority to force hosts to start the IPv6 address auto-config.

 Monitor for IPv6 host advertisements, and try to guess the link-local address by concatenating the prefix, and the

host portion of the IPv6 address.

 Use NDP host solicitation to determine if the IP address is valid.

msf auxiliary(ipv6_neighbor) > use auxiliary/scanner/discovery/ipv6_neighbor_router_advertisement
set interface vboxnet0

interface => vboxnet0
msf auxiliary(ipv6_neighbor_router_advertisement) > explot

[-] Unknown command: explot.

msf auxiliary(ipv6_neighbor_router_advertisement) > exploit

[*] Sending router advertisement...

[*] Listening for neighbor solicitation...
[*] |*| 2001:1234:dead:beef:a00:27ff:fe74:ddaa

[*] |*| 2001:1234:dead:beef:a00:27ff:fed1:d17a

[*] Attempting to solicit link-local addresses...
[*] |*| fe80::a00:27ff:fe74:ddaa -> 08:00:27:74:dd:aa

[*] |*| fe80::a00:27ff:fed1:d17a -> 08:00:27:d1:d1:7a

[*] Auxiliary module execution completed

Page 51 of 61

A sample Wireshark output of the aforementioned attack:

Figure 30 Wireshark Output IPv6 Neighbor Router Advertisement

It seems that this module works smoothly.

12.1.1 Conclusion

Metasploit can be used with IPv6 (against IPv6 targets, using IPv6-related payloads etc.) but, for the time being, it does

not include many IPv6-specific auxiliary or exploit modules. Hence, it is recommended that during the discovery-phase

other IPv6-specific tools, like the thc-ipv6 attack toolkit should be used. However, when you identify your IPv6 targets,

you can use your favorite exploits against them via an IPv6 connection. To this end, several IPv6-specific payloads are

supported (see Metasploit Modules).

Page 52 of 61

13 WHEN OUR FAVORITE HACKING TOOL DOES NOT SUPPORT IPV6

13.1 Fast and Easy

Probably one of the best solutions is to use socat34. A command line based utility that establishes two bidirectional byte

streams and transfers data between them. Because the streams can be constructed from a large set of different types

of data sinks and sources (see address types), and because lots of address options may be applied to the streams, socat

can be used for many different purposes.

socat TCP-LISTEN:8080,reuseaddr,fork TCP6:[fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa]:80

Now, let's leverage Nikto (which does not support IPv6) against our target:

perl nikto.pl -host 127.0.0.1 -port 8080

- Nikto v2.1.5

+ Target IP: 127.0.0.1

+ Target Hostname: localhost

+ Target Port: 8080

+ Start Time: 2014-09-01 16:07:56 (GMT3)

+ Server: Apache/2.4.10 (Fedora)

... <snipped for brevity> ...

+ End Time: 2014-09-01 16:08:19 (GMT3) (23 seconds)

+ 1 host(s) tested

As we can see, Nikto runs and finished smoothly the scan of our IPv6 target via socat. If you need some advanced IPv6

usage, then you should use the IPv6-to-IPv4 Proxy of Chiron :)

34 http://www.dest-unreach.org/socat/doc/socat.html

http://www.dest-unreach.org/socat/doc/socat.html#ADDRESS_TYPES
http://www.dest-unreach.org/socat/doc/socat.html#ADDRESS_OPTIONS

Page 53 of 61

13.2 Exploiting IPv6 Features with your IPv4 Tools

Socat and other similar tools do not “exploit” the features and the capabilities of the IPv6 protocols, such as the IPv6

Extension Headers and/or fragmentation. Chiron proxy that comes bundled with Chiron35 operates like a proxy between

the IPv4 and the IPv6 protocol. It is not a common proxy like a web proxy, because it operates at layer 3. It accepts

packets at a specific IPv4 address, extract the layer header and its payload, and sends them to a “target” using IPv6 but

adding optionally one or more IPv6 Extension headers. So, chiron proxy is not useful only when IPv6 is not supported by

your favorite ethical hacking tool, but, moreover, with tools that support IPv6 natively but you want to use some IPv6

features like the Extension Headers.

To use the tool, you must define, apart from the interface, at least the following parameters too:

 IPv4_sender, the IPv4 address of the software that sends the packet.

 IPv4_receiver, the IPv4 address where the proxy listens to

Of course, you must also define your IPv6 destination, as well as other generic parameters you may wish to include. The

way that chiron proxy operates is displayed in the figure below:

Figure 31 Chiron Workflow

The framework does not use the OS stack but its own library. When you send packets using the framework (e.g. a TCP

SYN packet) and the other replies (SYN ACK in our example), your OS, which does not know anything about this, it will

RESET (RST) the connection. To this end, you must temporarily configure your host firewall to drop such outgoing RST

packets to the specific IPv6 destination.

For the time being, you have to do it on your own. In an updated version it will be configured automatically for you (at

least for ip(6)tables and pf).

Example:

 You need to launch nikto against an IPv6-enabled web server.

 Your target's IPv6 address is fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa

 Your machine's IPv6 address is fdf3:f0c0:2567:7fe4:800:27ff:fe00:0

35 http://www.secfu.net/tools-scripts

Page 54 of 61

Step 1: Configure your firewall

Figure 32 IP6 Tables Firewall Configuration

Step 2: Launch the Proxy:

./chiron_proxy.py vboxnet0 127.0.0.1 127.0.0.3 -d fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa -threads 10

Step 3: Run your program

perl nikto.pl -h http://127.0.0.3

It will take some extra time in comparison with direct communication, due to extra manipulation. It is the price that you

have to “pay” using this tool. More information about Chiron can be found and the detailed tutorial that comes bundled

with the source code at http://www.secfu.net/tools-scripts/

http://www.secfu.net/tools-scripts/

Page 55 of 61

14 CONCLUSION

To summarize, we may draw the following conclusion:

 Information Gathering: Robtex, Shodan provide useful info.

 DNSRecon does the job for DNS.

 Dradis is fine for information gathering.

 Traceroute/traceroute6 work but not for advanced stuff (no Ext headers).

 Nmap - quite good support. Not ranges yet.

 Useful scripts - not something extraordinary, not everything works.

 Fingerprinting: p0f seems better than nmap - amap is always useful for fingerprinting services.

 Brute forcing - hydra is the only choice.

 Remote shells: Ncat works.

 Packet crafting: Scapy is your (only) friend.

 Nessus: Many IPv6-related plugins, not ranges or subnets.

 Web hacking: Burpsuite, sqlmap and Arachni work!

 For MITM, Ettercap supports IPv6 but not that useful yet.

 Net-snmp also supports IPv6.

 Metasploit: supports several IPv6 payloads, it does not include many IPv6-specific auxiliary or exploit modules.

 For the rest: Socat could be your friend. Chiron might even be better ;-)

Page 56 of 61

15 APPENDIX

15.1 List of the Tested Tools

Tool Remarks

Information Gathering / Collaboration

Robtex Robtex can be used for IPv6 reconnaissance purposes. It provides both IPv4 and IPv6 information for the targets.

Shodan Some information can be obtained regarding IPv6, but this should be further examined and analyzed. Certainly, digging further is required from the analyst's

perspective.

Maltego As far as IPv6 is concerned, it seems that Maltego is not an option.

Dradis It can be used for information collaboration in the IPv6 era.

Reconnaissance

Fierce IPv6 does not seem to be supported by fierce.

DNSrecon IPv6 is supported and related info is provided. A useful tool for the IPv6 era.

Tcptraceroute Although IPv6 is advertised, it doesn't seem to work.

Traceroute6 IPv6 is supported. No advanced features though (i.e. support of IPv6 Extension headers).

Firewalk It does not support IPv6.

Network (port) Scanning

Page 57 of 61

Unicornscan It does not support IPv6

Nmap Quite good support of port scanning in IPv6 using nmap. The most significant drawback is the fact that it does not support a range of IPv6 addresses, as well as

a comma-separated list of addresses. The latest can be handled by using an input file.

Fingerprinting

Nmap Although IPv6 fingerprinting is supported under IPv6, it is not that effective yet.

xprobe2 It does not support IPv6.

p0f It recognizes IPv6 traffic.

It seems to recognize Linux (as Linux 2.2.x-3.x) and Windows hosts (as “Windows 7 or 8”), but not BSD ones. More testing on this field is required though using

normal traffic, but, definitely, IPv6 is fingerprinting is supported. The only question is how effective it can be.

Amap There shouldn't be any problem by using amap/amap6 with IPv6 when you use as an input just a single address. Its detection performance does not depend on

layer-3 and hence, it should be the same as using IPv4. However, its creator, Marc Heuse, recommend amap just for UDP IPv6 scam only. Otherwise,

considered outdated...

Moreover, when you try to read the addresses/ports from an nmap machine readable output file (produced using nmap -oM), this is not performed properly and

the service fingerprint fails.

Brute-forcing

Hydra It partially supports IPv6. You can define a single IPv6 target using -6, but you cannot define a list of targets in a file using -M.

No options for adding IPv6 Extension headers or other IPv6-related capabilities (e.g. for evading purposes).

Medusa It does not support IPv6.

Ncrack Although it is claimed to be supported, at least experimentally, IPv6 does not seem to work.

Packet Crafting

Page 58 of 61

Hping It does not support IPv6.

Nping It offers very limited IPv6 functionality. For arbitrary IPv6 packet crafting, use either Scapy or Chiron :-)

Scapy Very good support of IPv6, not all the latest IPv6 Extension headers or protocols though (e.g. MLDv2).

Remote Shells

Ncat It works without problem using IPv6. It also supports some handy features, like ssl encryption, even using over IPv6.

LAN / MITM Attacks & other

Nmap NSE scripts Several NSE scripts either support IPv6 or they are IPv6-specific ones. Some of them do not appear to work properly. From the rest, the most

interesting/effective ones are the following:

 IPv6-ra-flood (quite effective even against the latest OS).

 Targets-ipv6-multicast-invalid-dst (this produces similar results to alive6 of the thc-ipv6 attacking toolkit).

 Targets-ipv6-multicast-echo

 IPv6-node-info

 Resolveall

Ettercap Although ettercap supports IPv6 addresses, critical modules (like MITM attacks) do not seem to be implemented yet.

Cain & Abel It does not support IPv6.

Net-snmp IPv6 is supported by Net-snmp, but you must compile it with this option enabled (it is not by default).

Vulnerability Scanning

Nessus It supports IPv6 addresses as targets, but NOT using IPv6 prefixes or IPv6 ranges. The IPv6 host discovery module does not use many methods to discovery IPv6

hosts (e.g. IPv6 datagrams with erroneous parameters or extension headers, etc.). However, it incorporates several IPv6-related vulnerability discovery plugins.

To sum-up, Nessus can be used against IPv6 networks but it is recommended that during the discovery phase more specialized tools, like the thc-ipv6 attack

Page 59 of 61

toolkit, should be used.

Web Penetration Testing

Nikto It does not support IPv6.

Skipfish It does not support IPv6.

Zaproxy It does not support IPv6.

Burpsuite Burpsuite can be used as a web proxy and can spider IPv6 targets smoothly!

Arachni It supports IPv6.

Sqlmap It supports IPv6.

Sqlninja It does not support IPv6.

W3af It does not support IPv6.

Exploitation Frameworks

Metasploit It can be used with IPv6 (against IPv6 targets, using IPv6-related payloads etc.) but, for the time being, it does not include many IPv6-specific auxiliary or exploit

modules. Hence, it is recommended that during the discovery-phase other IPv6-specific tools, like the thc-ipv6 attack toolkit should be used. However, when

you identify your IPv6 targets, you can use your favorite exploits against them via an IPv6 connection. To this end, several IPv6-specific payloads are supported

(see Appendix 15.2: Metasploit modules).

Table 1 List of Tested Tools

Page 60 of 61

15.2 Metasploit Modules

msf > search IPv6

[!] Database not connected or cache not built, using slow search

Matching Modules

================

Name Disclosure Date Rank Description

------ ------------ ----- ------ --------------

auxiliary/gather/dns_info normal DNS Basic Information Enumeration

auxiliary/gather/dns_srv_enum normal DNS Common Service Record Enumeration

auxiliary/scanner/discovery/ipv6_multicast_ping normal IPv6 Link Local/Node Local Ping Discovery

auxiliary/scanner/discovery/ipv6_neighbor normal IPv6 Local Neighbor Discovery

auxiliary/scanner/discovery/ipv6_neighbor_router_advertisement normal IPv6 Local Neighbor Discovery Using Router Advertisement

payload/bsd/x86/shell/bind_ipv6_tcp normal BSD Command Shell, Bind TCP Stager (IPv6)

payload/bsd/x86/shell/reverse_ipv6_tcp normal BSD Command Shell, Reverse TCP Stager (IPv6)

payload/bsd/x86/shell_bind_tcp_ipv6 normal BSD Command Shell, Bind TCP Inline (IPv6)

payload/bsd/x86/shell_reverse_tcp_ipv6 normal BSD Command Shell, Reverse TCP Inline (IPv6)

payload/cmd/unix/bind_netcat_gaping_ipv6 normal Unix Command Shell, Bind TCP (via netcat -e) IPv6

payload/cmd/unix/bind_perl_ipv6 normal Unix Command Shell, Bind TCP (via perl) IPv6

payload/cmd/unix/bind_ruby_ipv6 normal Unix Command Shell, Bind TCP (via Ruby) IPv6

payload/cmd/windows/bind_perl_ipv6 normal Windows Command Shell, Bind TCP (via perl) IPv6

payload/linux/x86/meterpreter/bind_ipv6_tcp normal Linux Meterpreter, Bind TCP Stager (IPv6)

payload/linux/x86/meterpreter/reverse_ipv6_tcp normal Linux Meterpreter, Reverse TCP Stager (IPv6)

payload/linux/x86/shell/bind_ipv6_tcp normal Linux Command Shell, Bind TCP Stager (IPv6)

payload/linux/x86/shell/reverse_ipv6_tcp normal Linux Command Shell, Reverse TCP Stager (IPv6)

payload/linux/x86/shell_bind_ipv6_tcp normal Linux Command Shell, Bind TCP Inline (IPv6)

payload/php/bind_perl_ipv6 normal PHP Command Shell, Bind TCP (via perl) IPv6

payload/php/bind_php_ipv6 normal PHP Command Shell, Bind TCP (via php) IPv6

payload/php/meterpreter/bind_tcp_ipv6 normal PHP Meterpreter, Bind TCP Stager IPv6

payload/ruby/shell_bind_tcp_ipv6 normal Ruby Command Shell, Bind TCP IPv6

payload/windows/dllinject/bind_ipv6_tcp normal Reflective DLL Injection, Bind TCP Stager (IPv6)

payload/windows/dllinject/reverse_ipv6_tcp normal Reflective DLL Injection, Reverse TCP Stager (IPv6)

payload/windows/meterpreter/bind_ipv6_tcp normal Windows Meterpreter (Reflective Injection), Bind TCP Stager (IPv6)

payload/windows/meterpreter/reverse_ipv6_tcp normal Windows Meterpreter (Reflective Injection), Reverse TCP Stager (IPv6)

payload/windows/patchupdllinject/bind_ipv6_tcp normal Windows Inject DLL, Bind TCP Stager (IPv6)

payload/windows/patchupdllinject/reverse_ipv6_tcp normal Windows Inject DLL, Reverse TCP Stager (IPv6)

payload/windows/patchupmeterpreter/bind_ipv6_tcp normal Windows Meterpreter (skape/jt Injection), Bind TCP Stager (IPv6)

payload/windows/patchupmeterpreter/reverse_ipv6_tcp normal Windows Meterpreter (skape/jt Injection), Reverse TCP Stager (IPv6)

payload/windows/shell/bind_ipv6_tcp normal Windows Command Shell, Bind TCP Stager (IPv6)

payload/windows/shell/reverse_ipv6_tcp normal Windows Command Shell, Reverse TCP Stager (IPv6)

payload/windows/upexec/bind_ipv6_tcp normal Windows Upload/Execute, Bind TCP Stager (IPv6)

payload/windows/upexec/reverse_ipv6_tcp normal Windows Upload/Execute, Reverse TCP Stager (IPv6)

payload/windows/vncinject/bind_ipv6_tcp normal VNC Server (Reflective Injection), Bind TCP Stager (IPv6)

payload/windows/vncinject/reverse_ipv6_tcp normal VNC Server (Reflective Injection), Reverse TCP Stager (IPv6)

post/multi/gather/resolve_hosts normal Multi Gather Resolve Hosts

post/windows/manage/portproxy normal Windows Manage Set Port Forwarding With PortProxy

Page 61 of 61

15.3 References

[1] https://isc.sans.edu/forums/diary/Are+your+tools+ready+for+IPv6+part+2/11416

15.4 Disclaimer

All products, company names, brand names, trademarks and logos are the property of their respective owners.

https://isc.sans.edu/forums/diary/Are+your+tools+ready+for+IPv6+part+2/11416

		2014-12-11T15:48:28+0100
	Friedwart Kuhn

