

Security Assessment of Microsoft Hyper-V

ERNW Newsletter 43 / May 2014

Version: 1.1

Date: 6/2/2014

Author(s): Felix Wilhelm, Matthias Luft

ERNW Enno Rey Netzwerke GmbH Tel. 0049 6221 – 48 03 90 Page 2

Carl-Bosch-Str. 4 Fax 0049 6221 – 41 90 08

D-69115 Heidelberg

Table of Content

1 INTRODUCTION ... 3

2 HYPER-V ARCHITECTURE... 4

2.1 OVERVIEW ... 4

2.2 VMWP, VSC AND VSP .. 5

2.3 HARDWARE-ASSISTED VIRTUALIZATION .. 6

2.4 INTERFACE DISCOVERY .. 6

2.5 AZURE HYPERVISOR = HYPER-V ? .. 7

2.6 INFORMATION SOURCES ... 7

2.7 REVERSE ENGINEERING PITFALLS ... 8
2.7.1 Symbol Porting ... 8
2.7.2 VMCS .. 9
2.7.3 Debugging .. 10

3 ATTACK SURFACE AND TESTING METHODOLOGY ... 11

3.1 DEVICE EMULATION .. 11

3.2 VMBUS AND SYNTHETIC DEVICES .. 12
3.2.1 VMBus .. 12
3.2.2 Storage ... 12

4 HYPERCALL API ... 14

5 MS13-092 ... 18

6 FURTHER RESEARCH AND CONCLUSION ... 21

7 APPENDIX: DISCLAIMER .. 22

ERNW Enno Rey Netzwerke GmbH Tel. 0049 6221 – 48 03 90 Page 3

Carl-Bosch-Str. 4 Fax 0049 6221 – 41 90 08

D-69115 Heidelberg

1 INTRODUCTION

Hyper-V is Microsoft’s first bare-metal hypervisor and its first native hypervisor with full support for the x86-64

architecture. It is heavily marketed as a competitive alternative to similar virtualization solutions like VMware ESXi, Xen

or KVM and is gaining market share due to its easy integration with other Microsoft solutions. Besides this enterprise

orientation, Hyper-V is also used in a variety of other platforms such as Microsoft Azure or the Xbox One gaming

console.

Despite the growing importance of Hyper-V, very little research which is publicly available was performed until now.

After almost six years on the market, only a handful of Denial-of-Service vulnerabilities were patched. Even though

Microsoft’s SDL has an impressive track record of producing secure software, this seems like an unrealistic low

amount of vulnerabilities for such a complex software.

In this paper we describe our research on the security of Hyper-V against attacks from a malicious unprivileged guest

VM. We focused on vulnerabilities that are related to memory corruptions, protocol parsing and design flaws but did not

look into issues like side-channel and timing attacks or insecure management of the surrounding environment.

The remainder of this paper is organized as follows: Chapter 2 gives a technical overview about the Hyper-V

architecture including its support for device emulation and synthetic devices. In addition we will highlight how Hyper-V

is used inside the Azure environment and what security consequences follow out of that. Chapter 3 discusses the attack

surface that exists from the perspective of a malicious virtual machine. This surface will be broken down into the

separate functionality and described as for the input vectors that are available to an attacker and our approach in

assessing those. Chapter 4 discusses the most interesting result of our research: The important vulnerability MS13-092

in Hyper-V’s hypercall functionality. Chapter 5 describes interesting targets for further research and is followed by the

final conclusion.

ERNW Enno Rey Netzwerke GmbH Tel. 0049 6221 – 48 03 90 Page 4

Carl-Bosch-Str. 4 Fax 0049 6221 – 41 90 08

D-69115 Heidelberg

2 HYPER-V ARCHITECTURE

The following subsections will describe Hyper-V’s internal architecture in detail. The covered terms, components, and

internals are required for the analysis of the attack surface in Chapter 3.

2.1 Overview

Hyper-V is a Type 1 hypervisor and thus runs directly on the hardware not relying on an underlying operating system.

This may be quite surprising for a number of users, because the installation procedure starts with a regular Windows

Server installation and Hyper-V is added as an additional role.

However, during the installation procedure the Windows operating system gets turned into a (highly privileged) Hyper-V

partition and is under control of the hypervisor after the next reboot.

Figure 1: High Level Architecture1

Figure 1 shows an overview of the architecture of Hyper-V. Microsoft calls virtualized operating systems partitions and

distinguishes between the (privileged) root partition and its (unprivileged) child partitions. The root partition is

responsible for management and configuration of all other partitions and is fully trusted by the hypervisor (comparable

to Xen’s Dom0). Hyper-V supports unmodified operating systems, which do not know that they are running in virtual

environment and are called unenlightened. In order to make this possible the hypervisor transparently emulates certain

standard devices that are supported by all modern operating systems.

1 http://msdn.microsoft.com/de-de/library/cc768520(en-us).aspx

	

ERNW Enno Rey Netzwerke GmbH Tel. 0049 6221 – 48 03 90 Page 5

Carl-Bosch-Str. 4 Fax 0049 6221 – 41 90 08

D-69115 Heidelberg

Enlightened operating systems with explicit support for

Hyper-V can make use of more advanced features to

increase performance. First of all they can use hypercalls to

communicate directly with the hypervisor, a mechanism

quite similar to the standard system call interface of

operating system kernels. Hypercalls are one of the publicly

documented Hyper-V APIs and are described in Chapter 0. In

addition, the VMBus mechanism is used to facilitate direct

high-speed communication between child and root

partitions. This is mainly used for so-called synthetic devices

that can be used by all enlightened partitions and are much

faster than their emulated counterparts2.

Because Microsoft decided keep the Hyper-V hypervisor as minimal as possible, large parts of the functionality are

outsourced to the root partition. This includes emulated as well synthetic devices and all advanced management

interfaces. This decision significantly reduces the complexity of the hypervisor code itself to about 100.000 lines of code.

However it has only limited impact on the security of the overall Hyper-V environment, as we will demonstrate later on.

2.2 VMWP, VSC and VSP

Figure 2 shows the core components inside the root partition and enlightened children. Each child partition has a

corresponding virtual machine worker process (VMWP) that is running as a normal user space process in the root

partition. The worker process performs management duties like snapshots or migrations. But it also implements the

aforementioned device emulation, as well as a couple of synthetic devices that are not performance critical.

The implementation of these features inside a user space process has a number of advantages: First, bugs that result in

a crash or high resource consumption do not affect the stability of the root partition, other VMs, or the overall

hypervisor. Second, the worker processes can be executed with low privileges. This means that an attacker who is able

to exploit a vulnerability in the device emulation layer still needs to perform an escalation of privilege for a full

compromise of the root partition. However, due to the need for additional context switches, a user space

implementation is not suitable for performance critical devices like networking and storage.

Such devices are implemented in Virtualization Service Providers (VSP). VSPs are drivers running in the kernel of the

root partition and are therefore very interesting targets for an attacker. The VSP’s counterparts in the child partitions

are the Virtualization Service Clients (VSC). All modern versions of Windows already come with these kernel drivers

included and provide the support of the operating system for the synthetic devices. In addition Linux and FreeBSD

include open source implementations of multiple VSC that were provided by Microsoft engineers. For Linux this code is

called Linux Integration Services and is nowadays directly included in the kernel tree. However, a more current version

with additional features can also be found in a Github repository3.

Device support alone is not sufficient for a virtualization solution and the core task of a hypervisor is the virtualization of

CPU and memory. As almost all x86-64 hypervisors, Hyper-V uses hardware-assisted virtualization. This means that

2 For example, emulated devices only support 100MBps NICs while synthetic 1000MBps NICs are available.
3 https://github.com/LIS/LIS3.5/tree/master/hv-rhel6.x/hv

	

Figure 2: Hyper-V Components

ERNW Enno Rey Netzwerke GmbH Tel. 0049 6221 – 48 03 90 Page 6

Carl-Bosch-Str. 4 Fax 0049 6221 – 41 90 08

D-69115 Heidelberg

Hyper-V uses the extended virtualization instruction sets Intel VT4 and AMD-V5. Because all of our research was

performed on Intel hardware we will use the Intel-specific terminology throughout this paper.

2.3 Hardware-assisted Virtualization

Intel VT adds support for two different processor operating modes: VMX root mode and VMX non-root mode. The

hypervisor operates in VMX root mode, while all partitions are running in non-root mode.

VMs operating in non-root mode do not experience any performance impact, but certain events can trigger a context

switch back to the hypervisor. These context switches are called VM exits and can occur for a number of reasons like

the execution of certain instructions (such as interrupt handling) or access to special system registers.

One of the goals of Intel VT is to be transparent to the guest operating system. Therefore, VM exits triggered by

instructions or system register access require a complete emulation of their behavior by the hypervisor. While this is

trivial for many exit reasons, complete support for all corner cases of the x86 architecture is difficult and error prone. A

complete discussion of security problems of hardware-assisted virtualization is out of the scope of this paper6, however

later sections will describe several properties of the VT architecture in more detail.

Even though Intel VT is designed to be transparent to the guest operating system, Hyper-V’s support for enlightened

partition requires that a virtualized operating system can examine whether it is running in Hyper-V or not. This is

supported by a dedicated interface discovery mechanism described in the following section.

2.4 Interface Discovery

When the CPUID instruction is executed by a virtualized partition, a VM

exit is triggered and Hyper-V modifies the typical CPUID return value by

adding Hyper-V specific information. A CPUID call with EAX=1 will result

in an ECX register with the MSB set. This indicates that a hypervisor is

present. Further information about the Hyper-V version and partition

permissions can be queried by executing CPUID with input values between

0x40000000 and 0x40000006. The figure on the right shows the output of a

small wrapper utility executed on a Windows Server 2012 Hyper-V system.

Interestingly, the returned information include the exact version of Hyper-

V , as well the hypercall permissions of the calling partition. These details

can help an attacker to decide if certain vulnerabilities are present and

allow better targeting for attacks.

Furthermore, using this Interface discovery mechanism in a Azure VM

returns quite interesting results as described in the next section.

4 Intel® 64 and IA-32 Architectures Software Developer’s Manual : Volume 3 (3A, 3B & 3C): System Programming Guide]
5 AMD64 Architecture Programmer’s Manual Volume 2: System Programming
 6Interested readers should watch the 30c3 talk Virtually Impossible by Gal Diskin:
https://www.youtube.com/watch?v=GoipioWrzAg

Figure 3: CPUID Instruction

ERNW Enno Rey Netzwerke GmbH Tel. 0049 6221 – 48 03 90 Page 7

Carl-Bosch-Str. 4 Fax 0049 6221 – 41 90 08

D-69115 Heidelberg

2.5 Azure Hypervisor = Hyper-V ?

Officially, the Microsoft Azure cloud runs on a hypervisor called the “Azure hypervisor”, which is not the same as Hyper-

V. However, even a cursory look at an Azure VM shows that the both hypervisors are at least strongly related. Figure 4

shows a screenshot of an Azure VM with the standard Hyper-V VSC services running and the CPUID instruction

executed in a Azure VM.

Figure 4: Hyper-V Integration Services in Azure VM & CPUID Instruction in Azure

In addition, we can use the interface discovery mechanisms discussed in the last section. Figure 5 shows the output of

the CPUID command: The only recognizable differences are in the service pack and service branch number. Even the

partition privileges are identical to the permission of a default Hyper-V VM.

Sharing a code base between Hyper-V and Azure makes sense from an engineering standpoint. For security

researchers or malicious attackers targeting Azure, it has the big advantage of allowing offline analysis of the

hypervisor. By concentrating on the Hyper-V attack surface that is also relevant for Azure, the chance to discover

vulnerabilities with a serious impact on the Azure cloud is quite high.

2.6 Information Sources

Even though Hyper-V is a proprietary software product, there are several public information sources that can be used to

get a better understanding of its implementation:

 Hypervisor Top Level Functional Specification7: This specification includes a detailed discussion of the Hypercall API

and the Interface discovery mechanisms.

 Patent Applications8: Multiple public patent applications describe implementation details of Hyper-V. This includes

the mechanisms used for Child-Parent communication as well as protocol specifications. While most applications

are quite hard to read in comparison to normal technical documents, they can still help to gain an understanding

about internal nomenclature and high level architecture.

7 http://blogs.msdn.com/b/virtual_pc_guy/archive/2014/02/17/updated-hypervisor-top-level-functional-
specification.aspx
8 http://www.faqs.org/patents/app/20120084517

ERNW Enno Rey Netzwerke GmbH Tel. 0049 6221 – 48 03 90 Page 8

Carl-Bosch-Str. 4 Fax 0049 6221 – 41 90 08

D-69115 Heidelberg

 Linux Integration Services9: As mentioned before, the Linux Integration Services are an open source

implementation of VSCs, VMBus and the hypercall API for Linux. They ease the understanding of implementation

details in these parts of Hyper-V and are extremely helpful when developing tools to evaluate and attack these APIs.

 Singularity Header Files10: Singularity is an open source research OS developed by Microsoft Research. Its SVN

repository contains a number of proprietary Windows header files, including several for the Microsoft Hyper-V guest

interface.

 Common Criteria Certification Documents11: The Common Criteria certification requires a comprehensive

documentation to be available. This documentation is publicly available.

 Binaries: Of course, the most accurate and detailed information can be extracted out of the implementation itself.

Table 1 lists several of the files we analyzed during our research. The next section describes some of the challenges

involved with reversing these files.

Filename Description

hvix64.exe /

hvax64.exe

Core Hypervisor executables, for Intel and AMD. Includes all code that runs in VMX

root mode after boot process is finished

vmwp.exe
Executable for VM worker processes. Includes code for device emulation, as well as

several synthetic devices

vmswitch.sys Windows Kernel driver that implements the Networking VSP

storvsp.sys /

vhdmp.sys
Kernel driver for Storage VSP

Table 1: Hyper-V executables

2.7 Reverse Engineering Pitfalls

The reverse engineering of Hyper-V/some of its core functionality, we had to overcome several challenges. Those

challenges are very relevant for any security researcher analyzing Hyper-V and we hope the description in the following

subsections will provide helpful insights.

2.7.1 Symbol Porting

To understand the implementation of security relevant core functionality like VM exit handling or the hypercall API,

reverse engineering of the core hypervisor binaries must be performed. Our research was performed on Intel hardware,

so we worked with hivx64.exe. When trying to get an initial understanding of the included functionality we have to

overcome some challenges.

First, no public debugging symbols are available for the binary. This increases the effort necessary to identify security

relevant code regions. Second, the standard method to identify interesting function by searching for debug output and

other human readable strings does not work due to the very low amount of such functionality in the hypervisor itself.

Finally, we can’t rely on the usage of known APIs or libraries. In contrast to user space programs or kernel drivers, the

hypervisor is a single statically linked executable.

9 https://github.com/LIS
10 https://singularity.svn.codeplex.com/svn/base/Windows/Inc/
11 http://www.commoncriteriaportal.org/files/epfiles/0570b_pdf.pdf

ERNW Enno Rey Netzwerke GmbH Tel. 0049 6221 – 48 03 90 Page 9

Carl-Bosch-Str. 4 Fax 0049 6221 – 41 90 08

D-69115 Heidelberg

However, there are some techniques we can use to identify interesting functionality: A researcher named Gerhart

describes his approach to symbol porting in a detailed blog post on securitylab.ru12: hvix64.exe shares a lot code with

winload.exe and hvloader.exe. Public debugging symbols are available for both of them. Using the popular

BinDiff13 software, we can identify shared functions and port the included symbols over to our executable.

Unfortunately, the shared functionality mainly concerns networking code, the USB stack as well as the WinDBG

debugger stub and is not that interesting for our goal of identifying the attack surface.

2.7.2 VMCS

As mentioned before, the hypervisor cannot rely on any external libraries. The only helpful documented functionality it

uses are the Intel VMX instructions used to configure and manage the different virtual machines. As described in

Volume 3 of the official Intel Manual14, the central part of VMX are data structures called VMCS (Virtual-Machine Control

Structures). A VMCS is separated into four logical parts:

 Guest-state area

 Host-state area

 Control fields for VM-execution, VM-exit and VM-entry

 VM-exit information fields

The Guest-state area is used to store the processor state of the VM when it exits and passes control to the hypervisor.

This includes certain control registers, as well as MSRs and segment selectors but most importantly the values of RIP,

RSP and RFLAGS. When the VM exit was handled by the hypervisor and the virtual machine is continued, the processor

state is loaded from its VMCS and execution can (potentially) continue transparently.

The Host-state area is loaded during a VM-exit and describes the initial state of the hypervisor when handling these

exits. This makes it especially interesting for us, because the stored RIP and RSP values allow us to quickly identify the

main exit handler as well as its stack location.

Control fields for VM-execution control the operation in VMX non-root mode. These fields control the handling of

interrupts and certain types of instruction and decide which actions trigger a VM exit. They are a interesting target for

security research, because insecure control field settings can lead to severe logical flaws.

Finally, the VM-exit information fields contain information about the VM-exit reason. These information are used

throughout the VM exit handlers and are therefore quite relevant from a reversing standpoint.

Figure 5: VMREAD instruction with human-readable field name

12 http://www.securitylab.ru/contest/444112.php
13 http://www.zynamics.com/bindiff.html
14 Intel® 64 and IA-32 Architectures Software Developer’s Manual: Volume 3 (3A, 3B & 3C): System Programming Guide

ERNW Enno Rey Netzwerke GmbH Tel. 0049 6221 – 48 03 90 Page 10

Carl-Bosch-Str. 4 Fax 0049 6221 – 41 90 08

D-69115 Heidelberg

VMCS fields are read and written with dedicated instructions: VMREAD and VMWRITE. Both instruction require an

encoded argument that describes the accessed VMCS field15. For our research we decided on using this information in a

semi-automated approach. Using a IDAPython script, we translated all VMCS accesses into their human-readable

version. This eases understanding of all code parts involving VMCS fields and allowed us to identify main functionality

like VM exit handling and hypercall handler.

2.7.3 Debugging

Even though static analysis proved to be feasible to gain an initial understanding, we quickly decided that additional

dynamic analysis was required for a more comprehensive analysis.

Interestingly, Hyper-V has integrated debugging functionality using Microsoft’s WinDBG. Debugging Hyper-V itself

works nearly the same way as debugging the Windows kernel, but is not quite as comfortable due to missing symbols

and functionality16.

Different access methods like Firewire, Ethernet and USB are supported, but in practice we had the most reliable

results on physical hardware with standard serial ports17. Although debugging the hypervisor using physical hardware

is definitely possible, a virtualization based method would be much more comfortable. Luckily, current versions VMware

Workstation and VMware Fusion support a feature called nested virtualization. Nested virtualization allows the usage of

Intel VT inside a virtualized machine and makes it possible to run Hyper-V as a normal VM.

By virtualizing Hyper-V itself we gain a number of advantages. In addition to the mentioned WinDBG interface we can

now also used VMware’s built-in GDB stub as an alternative debugging environment. In addition, snapshots can be used

as an easy and fast way to get a physical memory dump. VMware Workstation/Fusion also provides support for sharing

serial ports between virtual machines, which makes it possible to run both the debugger and the debugee in virtual

machines18.

While this still does not lead to a comfortable or feature rich debugging environment, it proved sufficient to perform the

analyses required for our research.

15 A table containing all VMCS fields and the corresponding value can be found in APPENDIX B of the Intel Manual
Volume 3.
16 Hyper-V specific functionality seems to be included inside a WinDBG extension called hvexts.dll. Sadly, it is not
publicly available.
17 The actual setup including required commands is described here:
http://msdn.microsoft.com/en-us/library/windows/hardware/ff540654(v=vs.85).aspx
18 For VMware Fusion a small workaround is required, which is described here:
http://www.insinuator.net/2014/01/serial-port-debugging-between-two-virtual-machines-in-vmware-fusion/

ERNW Enno Rey Netzwerke GmbH Tel. 0049 6221 – 48 03 90 Page 11

Carl-Bosch-Str. 4 Fax 0049 6221 – 41 90 08

D-69115 Heidelberg

3 ATTACK SURFACE AND TESTING METHODOLOGY

Based on the architectural overview presented in Chapter 2, we identified the following components as potential and

most promising targets for VM breakout attacks:

 Device Emulation

 VMBus and Synthetic Devices

 Hypercall API

 (VM Exit handling)

The following sections will describe each of these components in more detail and present our approach at finding

security issues. We did not perform more than a cursory assessment of general VM exit handling yet and will therefore

not include this topic in this chapter.

3.1 Device Emulation

Device virtualization is one of the core responsibilities of every virtualization solution. While synthetic devices have

better performance characteristics and a saner interface, they are not sufficient for general purpose virtualization.

Older operating systems without explicit support for these devices are still dependent on the availability of “standard”

hardware inside the virtual environment. This problem is normally solved using device emulation, where older

hardware with wide support is emulated by the hypervisor.

Due to the high complexity of the emulated devices and the high performance requirements, device emulation is often a

weak point in virtualization software. In 2007, Tavis Ormandy describes his approach at fuzzing emulated devices in

multiple virtualization solutions, which discovered multiple vulnerabilities. In addition, the device emulation layer is a

popular target for the Xen and KVM hypervisors, which use QEMU for the implementation of their devices.

Hyper-V supports a number of emulated devices for normal VMs:

 Network adapter

 S3 Trio graphic card

 Keyboard / Mouse

 IDE Controller

All of them are implemented in vmwp.exe, the VM worker process. Because the attack surface of emulated devices is

quite well understood and fuzzing them requires no knowledge specific to a single hypervisor, we did not expect many

results. Basic fuzzing of all devices triggered permanent crashes of the VM, which were triggered by assertions in the

worker process. In addition, we were able to freeze the worker process with 100% CPU consumption, which required a

hard kill using the task manager of the parent partition. This might be a relevant issue for some cloud environments but

does not influence other VMs in any way and is therefore not critical.

Further static analysis of the vmwp.exe binary showed a lot of defensive checks and no obvious security vulnerabilities.

ERNW Enno Rey Netzwerke GmbH Tel. 0049 6221 – 48 03 90 Page 12

Carl-Bosch-Str. 4 Fax 0049 6221 – 41 90 08

D-69115 Heidelberg

3.2 VMBus and Synthetic Devices

3.2.1 VMBus

As already mentioned, the VMBus is a mechanism used for communication between partitions. In Hyper-V’s default

configuration, communication is only allowed between child and root partition. The VMBus itself is implemented using

memory pages that are mapped into multiple partitions, in the default case into the root partition and the target child

partition. This means that data which is sent through the bus does not need to be copied ”through” the hypervisor,

which reduces the necessary number of context switches which improves performance significantly.

VMBus communication is separated into channels, where every channel consists of an incoming and an outgoing ring

buffer. Because the ring buffer space is quite limited, performance critical components use an additional mechanism

called Guest Physical Address Descriptor Lists (GPADLs), which allows the root partition to directly map additional

pages of guest memory into its own address space.

The main consumers of the VMBus infrastructure are synthetic devices. This includes storage and networking, but also

video drivers and some additional utility services (such as time synchronization, dynamic memory allocation for VMs and

a Key-Value service).

As mentioned in Section 2.2, storage and networking are implemented as kernel drivers. This makes them interesting

targets because a vulnerability in those drivers (e.g. parsing the input from attacker-controlled partitions) would result

in a direct compromise of the root partition’s kernel space and thus the complete root partition. In contrast, the video

driver as well as all utility services are implemented as part of the VM worker process.

Figure 6: High Level Overview of the synthetic storage device

3.2.2 Storage

For our research we first concentrated on the storage VSP. Its design is quite interesting because the VSC sends

(amongst other packet types) encapsulated SCSI commands over the VMBus, which are then parsed and transformed

into simple file accesses actions by the Storage VSP. Figure 6 highlights the involved components for the

implementation of a synthetic storage device on an enlightened Linux guest.

The storage VSC in the child partition encapsulates a SCSI command inside a so-called vstor packet. This packet gets

encapsulated into a VMBus packet by the VMBus driver and gets transmitted over the aforementioned ring buffer. In

ERNW Enno Rey Netzwerke GmbH Tel. 0049 6221 – 48 03 90 Page 13

Carl-Bosch-Str. 4 Fax 0049 6221 – 41 90 08

D-69115 Heidelberg

the root partition the VMBus driver hands the packet over to the storvsp.sys driver, which dispatches it into the

corresponding handler function in the vhdump.sys driver. Figure 7 shows an example for such an SCSI command

handler. Notice the use of the BSWAP instruction, which is used to convert between the big endian SCSI protocol and

the little endian system architecture.

In order to assess the security of the storage VSP we again started with basic fuzzing.

This naïve approached proved to be infeasible, because fuzzing of vstor and vmbus

packets leads to permanent crashes of the storage VSC and therefore to a crash of the

whole child partition. To solve this problem, we improved our fuzzing framework to allow

fine grained fuzzing of executed SCSI commands: Our fuzzer uses the kprobes19

interface, which allows the hooking of almost arbitrary kernel functions. By hooking

generic VMBus packet_send functions and manipulating the passed arguments

depending on the callers, we can restrict our fuzzing to data that does not trigger

permanent VM crashes. Of course, this reduces the surface that is actively fuzzed and

therefore this approach needs to be supplied with manual analysis. f course, this

reduces the surface that is actively fuzzed and therefore this approach needs to be

supplied with manual analysis.

In the end, we did not discovery any critical vulnerabilities in the storage VSP. However,

our analysis was quite limited and due to the ineffectiveness of normal fuzzing manual

analysis is definitely required.

19 https://www.kernel.org/doc/Documentation/kprobes.txt

Figure 7: SCSI Command
Handler

ERNW Enno Rey Netzwerke GmbH Tel. 0049 6221 – 48 03 90 Page 14

Carl-Bosch-Str. 4 Fax 0049 6221 – 41 90 08

D-69115 Heidelberg

4 HYPERCALL API

The last component we want to discuss in this paper is the Hypercall API. Hypercalls in Hyper-V are like system calls

but operate between the guest kernel and the hypervisor. They are used by enlightened partitions to enhance

performance and to enable advanced functionality like the VMBus. In addition, the root partition manages all other

partitions using administrative hypercalls. The API itself is very powerful and includes the ability to create and destroy

new partitions or to set and read register values of different VMs. Of course such functionality is protected by

permission checks and normally restricted to the root partition.

Figure 8: Documentation for HvGetVPRegisters

In contrast to the VMBus and its synthetic devices, the Hypercall API is fully documented by Microsoft in the Hypervisor

Top Level Functional Specification. For example, Figure 8 shows the interface description of the HvGetVPRegisters

hypercall that allows read access to the registers of a virtual machine. All other available hypercalls are documented in

the same format.

In order to audit the hypercalls we first have to identify the corresponding handler functions. Using the approach

outlined in Section 2.7.2, we can quickly identify the main VM exit handler by searching for the corresponding VMWRITE

instruction as shown in Figure 9.

ERNW Enno Rey Netzwerke GmbH Tel. 0049 6221 – 48 03 90 Page 15

Carl-Bosch-Str. 4 Fax 0049 6221 – 41 90 08

D-69115 Heidelberg

Figure 9: vmwrite to host_rip VMCS field

The VM exit handlers of all hypervisors follow the same basic structure:

 Store Guest State

 Dispatch to different handler functions depending on the exit reason

 Restore Guest State

The interface for basic hypercalls works like this:

 The call number is stored in RCX,

 the guest physical address pointing to the input is stored in RDX,

 and the GPA pointing to a writable memory region for the output is stored in R8.

Finally, the VMCALL instruction is executed to trigger a VM exit. By identifying the functions that are called when the

VMCS exit reason equals VMCALL, we can therefore identify the code responsible for handling hypercalls.

By analyzing this function, we can quickly identify the main data structure for handling hypercalls, which is displayed in

Figure 10.

ERNW Enno Rey Netzwerke GmbH Tel. 0049 6221 – 48 03 90 Page 16

Carl-Bosch-Str. 4 Fax 0049 6221 – 41 90 08

D-69115 Heidelberg

Figure 10: Hypercall Handler Table

Using this data structure, allows a quick identification of all relevant handler functions. When auditing single hypercall

handlers for vulnerabilities, we have several advantages: First, the handler functions itself are relatively isolated. They

have a single purpose, which makes it easer to identify the functionality of called functions. Second, because the input

and output interface are documented by the Top Level Specification, reasoning about the actual code flow is relatively

easy.

Figure 11 shows the handler function for the HvGetPartitionId hypercall. At the start of each handler function, the

RCX register points to the input location, while RDX points to the output. Both memory regions do not directly map into

the VM memory. Instead, the input is copied before starting the handler and the output is written to VM memory after

the handler finishes. This removes the possibility to manipulate the hypercall input while the handler is actively running

and therefore removes a whole vulnerability class.

When actually auditing the hypercall handlers itself for vulnerabilities, we can quickly identify one big issue: Most

interesting functionality is only available to the root partition and is guarded by strict and early permission checks.

However, there are a lot of checks performed before the actual hypercall handler executes. When we looked at them we

quickly identified one critical issue that resulted in MS13-092.

ERNW Enno Rey Netzwerke GmbH Tel. 0049 6221 – 48 03 90 Page 17

Carl-Bosch-Str. 4 Fax 0049 6221 – 41 90 08

D-69115 Heidelberg

Figure 11 HvGetPartitionId handler

ERNW Enno Rey Netzwerke GmbH Tel. 0049 6221 – 48 03 90 Page 18

Carl-Bosch-Str. 4 Fax 0049 6221 – 41 90 08

D-69115 Heidelberg

5 MS13-092

Before calling the actual hypercall handler, multiple sanity checks are performed. For example, it has to be ensured

that the hypercall actually comes from ring 0 of the VM. In addition sanity checks of the input and output GPA are

performed. Are they correctly aligned? Do they look “sane”?

Figure 12 Check on Input GPA

One of these checks is shown in Figure 12: The input GPA is stored in the RSI register and is checked against a bitmap.

If the input GPA is too large an error condition is raised. The vulnerability lies deeper down the call stack in one of the

error handler functions:

Figure 13: EPT Error Handler

Figure 13 shows a function responsible for the handling of EPT20 errors. It is called when a normal EPT violation is

triggered by a VM but also when the aforementioned error condition is set.

20 Extended Page Table

ERNW Enno Rey Netzwerke GmbH Tel. 0049 6221 – 48 03 90 Page 19

Carl-Bosch-Str. 4 Fax 0049 6221 – 41 90 08

D-69115 Heidelberg

Figure 14: Out-of-Bound Array Access

If the EPT violation was triggered by a memory read, a function we named ept_read_error is called. This is also the

case for the code path executing after an invalid input GPA was supplied as a hypercall argument. At the beginning of

the function, RDX contains the attacker controlled input GPA. RDX is then copied to RAX, shifted by 12 bits to the right.

This value is than used as an index into the page table, containing page table entries (PTEs), of the VM.

The purpose of the page table is to map guest physical pages to system page table entries. There is exactly one such

table for each VM and interestingly they are allocated in a constant offset to each other.

Because the input GPA can be almost arbitrarily large21 the array access can be used to access memory out of bounds

of the page table. Crashing the hypervisor is now really easy by triggering an invalid memory access. Any valid hypercall

number with the input GPA set to 0x4141414141 will suffice and result in a Hyper-V blue screen and a Denial-of-Service

(DoS) situation for the complete hypervisor, of course including all guests operated on it:

Figure 15 Hyper-V Blue-Screen-of-Death

We reported this bug to Microsoft and it was patched in November 2013 in bulletin MS13-09222. Interestingly, Microsoft

rates this bug as a potential privilege escalation between different partitions. So we decided to dig a bit deeper how this

bug can be turned from a DoS to a PrivEsc.

21 There is a upper limit of 0x1000000000000
22 https://technet.microsoft.com/en-us/library/security/ms13-092.aspx

ERNW Enno Rey Netzwerke GmbH Tel. 0049 6221 – 48 03 90 Page 20

Carl-Bosch-Str. 4 Fax 0049 6221 – 41 90 08

D-69115 Heidelberg

Figure 16: Simplified Pseudo-Code

Figure 16 shows a simplified version of the vulnerable function. It will simply return 0 in most cases and only performs

relevant operations when the page frame number (PFN) in the PTE equals a certain value.

Analyzing the patch provided by Microsoft reveals as the only obvious change an additional size check in front of the

function that force returns 0 when it fails. This means that all code paths executing after the vulnerable function returns

0 are not interesting for the exploitation of the vulnerability.

In conclusion, we have to find a way to read a PTE (from a different VM) that contains the “special” PFN number in order

to trigger potentially malicious memory access. Using purely static analysis, we were not able to identify the use case of

this PFN and it was not used by the VMs in our lab. This probably means that it is only used in certain circumstances

that are possibly configuration dependent. Trying to read a completely attacker controlled value fails due to the large

size of the 64bit address space and the aforementioned upper limit on the input GPA value.

If an attacker is able to pass this check, he can reach interesting code. However, the only two values he can influence

are the PTE and the input GPA. Those are quite restricted due to the mentioned PFN checks, so he can only minimally

influence the next execution steps.

While it is definitely not possible to turn the read violation in some kind of writing memory corruption, the possibility to

map a PTE from one VM to another would be a problem as well. While we are positive that there is no trivial way to

exploit this specific issue, we will analyze the patch and resulting behavior further and encourage other researches to

do so as well.

ERNW Enno Rey Netzwerke GmbH Tel. 0049 6221 – 48 03 90 Page 21

Carl-Bosch-Str. 4 Fax 0049 6221 – 41 90 08

D-69115 Heidelberg

6 FURTHER RESEARCH AND CONCLUSION

This paper summarized our research on Hyper-V security. While most of the time was spent gaining a detailed

understanding of the architecture and mapping the attack surface for VM breakout attacks, we also did discover a

critical vulnerability in the handling of hypercalls.

Based on this work, we plan to perform a more detailed analysis of other VSPs and develop techniques to improve our

fuzzing capabilities (mainly improving crash recovery/reducing the overall amount/need of crashes of the guest

machine). In addition, analyzing the different Hyper-V versions for silently patched vulnerabilities seems to be a

promising activity as we plan to demonstrate later this year.

Our research shows that hypervisors are large and complex software with a significant attack surface. Even if the term

“Virtual Air Gap” is quite popular nowadays, our research shows that this gap is much smaller than a physical one.

While Hyper-V is solid software and was developed with security in mind, it still suffers from critical security

vulnerabilities. This is supposed to motivate other researchers as well to use our results and step in on analyzing the

huge attack surface of Hyper-V, following the old hacker spirit Make the Theoretical Practical!

ERNW Enno Rey Netzwerke GmbH Tel. 0049 6221 – 48 03 90 Page 22

Carl-Bosch-Str. 4 Fax 0049 6221 – 41 90 08

D-69115 Heidelberg

7 APPENDIX: DISCLAIMER

All products, company names, brand names, trademarks and logos are the property of their respective owners.

	1 Introduction
	2 Hyper-V Architecture
	2.1 Overview
	2.2 VMWP, VSC and VSP
	2.3 Hardware-assisted Virtualization
	2.4 Interface Discovery
	2.5 Azure Hypervisor = Hyper-V ?
	2.6 Information Sources
	2.7 Reverse Engineering Pitfalls
	2.7.1 Symbol Porting
	2.7.2 VMCS
	2.7.3 Debugging

	3 Attack Surface And Testing Methodology
	3.1 Device Emulation
	3.2 VMBus and Synthetic Devices
	3.2.1 VMBus
	3.2.2 Storage

	4 Hypercall API
	5 MS13-092
	6 Further Research and Conclusion
	7 Appendix: Disclaimer

