

ERNW Newsletter 39 / March 2012

Attacking High Speed Ethernet Links -
Practical attacks against unencrypted high speed Ethernet

links.

Version: 1.0

Date: 12.03.2012

Author: Enno Rey (erey@ernw.de), Daniel Mende (dmende@ernw.de), Hendrik Schmidt (hschmidt@ernw.de), Matthias

Luft (mluft@ernw.de)

ERNW Enno Rey Netzwerke GmbH

Breslauer Str. 28

69124 Heidelberg

Tel. +49 6221 480390

Fax +49 6221 419008

www.ernw.de

ERNW Enno Rey Netzwerke GmbH Tel. 06221 – 48 03 90 Seite 2

Breslauerstr. 28 Fax 06221 – 41 90 08

D-69124 Heidelberg Ust-ID DE813376919

Table of Contents

1 ABSTRACT ... 3

2 EXECUTIVE SUMMARY ... 3

3 INTRODUCTION .. 5

3.1 Problem Statement ... 5

3.2 Related Work .. 5

3.3 Prerequisites .. 5

4 USE CASE: DATA CENTER INTERCONNECT ... 6

4.1 Involved Network Technologies ... 6

4.2 Protocols ... 6

4.3 Attacks .. 6

5 TACKLING THE PROBLEM ... 7

5.1 COTS Packet Analysis Tools ... 7

5.2 Custom Tool pcap_extractor .. 7

5.3 Hardware Aspects .. 7

5.3.1 Identifying the bottleneck 7
5.3.2 Actual lab setup 8

5.4 Doing it “the cloud way” .. 8

5.4.1 Lab Setup 8
5.4.2 Results 9

6 TEST RESULTS .. 10

6.1 Description of Overall Test Methodology .. 10

6.1.1 Command line options 10

6.2 Results ... 11

6.3 Demo: Extracting credit card data from an Oracle database running on virtual

machine being transferred as a whole ... 13

7 CONCLUSIONS .. 15

8 APPENDIX ... 16

8.1 Bibliography ... 16

8.2 Details of AWS Instance used ... 17

8.3 Code of custom tool ... 18

ERNW Enno Rey Netzwerke GmbH

Breslauerstr. 28

D-69124 Heidelberg

1 ABSTRACT

This paper discusses practical attacks against unencrypted high speed Ethernet links. There is a common

misconception that the sheer amount

technology) make successful attacks highly unlikely. We will show that a skilled and motivated attacker can easily

identify and extract sensitive information if

be able to do so in a feasible manner as for the time or technical resources needed.

2 EXECUTIVE SUMMARY

To assess if the extraction of specific data from very large sets of captured

in terms of tools, hardware or time needed, a practical approach was undertaken. This included evaluating tools,

building a lab with suitable hardware for performing a number of tests, including a demonstratio

card data from a file sized 500 GB and containing a virtual machine running an

example, have been derived

organization.

Assuming the captured data was stored in standard

the data extraction task was proven quite

results.

Data center A

ERNW Enno Rey Netzwerke GmbH Tel. 06221 – 48 03 90

 Fax 06221 – 41 90 08

 Ust-ID DE813376919

This paper discusses practical attacks against unencrypted high speed Ethernet links. There is a common

that the sheer amounts of data which can be transferred using multiplexed channels (e.g. WDM

technology) make successful attacks highly unlikely. We will show that a skilled and motivated attacker can easily

tract sensitive information if he observes/collects a large amount of raw data and, more importantly, will

be able to do so in a feasible manner as for the time or technical resources needed.

To assess if the extraction of specific data from very large sets of captured network traffic can be done in a feasible way

in terms of tools, hardware or time needed, a practical approach was undertaken. This included evaluating tools,

hardware for performing a number of tests, including a demonstratio

card data from a file sized 500 GB and containing a virtual machine running an Oracle database. Such a file could, for

 from an eavesdropping attack against a high speed link connecting two data centers of a

Assuming the captured data was stored in standard pcap format on a number of equally-

the data extraction task was proven quite feasible with somewhat limited resources. Table

Eavesdropping
attack

Data center interconnect

Sniffed data
is stored

 Seite 3

This paper discusses practical attacks against unencrypted high speed Ethernet links. There is a common

of data which can be transferred using multiplexed channels (e.g. WDM

technology) make successful attacks highly unlikely. We will show that a skilled and motivated attacker can easily

ves/collects a large amount of raw data and, more importantly, will

network traffic can be done in a feasible way

in terms of tools, hardware or time needed, a practical approach was undertaken. This included evaluating tools,

hardware for performing a number of tests, including a demonstration of extracting credit

database. Such a file could, for

from an eavesdropping attack against a high speed link connecting two data centers of an

-sized solid-state drives (SSDs)

Table 1 shows the most important

Data center A’

ERNW Enno Rey Netzwerke GmbH

Breslauerstr. 28

D-69124 Heidelberg

Table 1: Results from test lab configured with four individual SSD drives and using custom tool

Filesize (GB)
Time of custom code

(s)

44 113

80 203

204 521

404 1017

516 1290

808 2041

As depicted, in the demonstration setup, the search for

minutes, employing available tools and using common

Furthermore the time needed scales

have taken ~ 42 minutes, a 2 TB file would have taken ~ 84 minutes and so on. In addition, SSD prices are constantly

declining, too.

Thus it could be shown that simply the

attacker from analyzing this data.

Sniffed data

ERNW Enno Rey Netzwerke GmbH Tel. 06221 – 48 03 90

 Fax 06221 – 41 90 08

 Ust-ID DE813376919

: Results from test lab configured with four individual SSD drives and using custom tool

code

(s)

Estimated time for 500

GB (s)
Time of tcpdump (s)

113 1284 114

203 1269 204

521 1277 522

1017 1259 1016

1290 1250 1290

2041 1263 2043

, in the demonstration setup, the search for particular credit card data could be performed in about 21

minutes, employing available tools and using common-of-the-shelf hardware for about 3000

Furthermore the time needed scales linearly with the file size, so that processing a 1 TB data volume presumably would

have taken ~ 42 minutes, a 2 TB file would have taken ~ 84 minutes and so on. In addition, SSD prices are constantly

simply the amount of data gained from eavesdropping high speed links

attacker from analyzing this data.

Search with high
performance hardware

 Seite 4

: Results from test lab configured with four individual SSD drives and using custom tool

Estimated time for 500

GB (s)

1295

1275

1279

1257

1250

1264

credit card data could be performed in about 21

3000 €.

with the file size, so that processing a 1 TB data volume presumably would

have taken ~ 42 minutes, a 2 TB file would have taken ~ 84 minutes and so on. In addition, SSD prices are constantly

of data gained from eavesdropping high speed links may not prohibit an

Search result:
e.g. credit card

numbers

ERNW Enno Rey Netzwerke GmbH Tel. 06221 – 48 03 90 Seite 5

Breslauerstr. 28 Fax 06221 – 41 90 08

D-69124 Heidelberg Ust-ID DE813376919

3 INTRODUCTION

3.1 Problem Statement

There is a common misconception that the sheer amounts of data coupled with multiplexed channels (e.g. WDM

technology) make successful eavesdropping attacks on high speed Ethernet1 links highly unlikely. This is mainly based

on the assumption that the amount of resources (e.g. RAM, [sufficiently fast] storage or CPU power) needed to process

large files of captured data is a limiting factor. However, to the best of our knowledge, no practical evaluation of these

assumptions has so far been performed.

Therefore this paper aims to answer the following questions:

� Can large2 amounts of captured data be processed “in a feasible way”3?

� How much time and which type of hardware is needed to perform this task?

� Can this be done with publicly available tools or is custom code helpful or even required? If so, how should that code

operate?

� Can this task be facilitated by means of public cloud services?

We performed a number of tests with files of different sizes and entropy4. Tests were both carried out with different sets

of dedicated hardware and by means of public cloud services. This paper describes the tools used, the various test

setups and, of course, the results. A final section includes some conclusions derived from the insights provided by the

test sets.

While our research wasn’t focused on particular environments, the analysis of typical “data center interconnect links”

will be discussed. For that purpose a lab was built where a full transfer of an Oracle database running on a virtual

machine (being transferred across such a link by means of VMotion technology) and processing credit card data was

simulated.

3.2 Related Work

We did not perform an extensive search for related work but it seems a widely accepted fact that working with large

pcap files might become cumbersome and often leads to systems crashing when those are opened with Wireshark.

Even though there are several papers discussing the performance of network analysis (1) or the distribution of this

analysis(2), none of those covers the problem discussed in this paper.

3.3 Prerequisites

It is assumed that an attacker has already gained access enabling him to eavesdrop on the high speed data link. A

detailed description how this can be done can be found in (3). The focus of the present paper is on the subsequent

extraction of useful data from the resulting dump file. It is further assumed the collected data is available in standard

pcap5 format.

1 In the context of this paper “high speed Ethernet“ refers 10 GbE or faster.

2 For demonstration purposes we limited our research to files in the 500 gigabyte size range (with 500 gigabyte being equivalent

to the full live migration of 16 virtual machines with 32 GB of virtual memory each) which equates to ~ 400 seconds of sniffing

on a full 10 GbE link. However it can be shown (and will be laid out in detail in this paper) that the analysis time of traffic dump

files scales up almost linearly. So, in the end of the day, it comes down to the hardware of (more precisely: the type and number

of the storage devices attached to) the system performing the actual processing.

3 Where “feasible” means within some hours and by means of hardware to be purchased for less than 5,000 EUR.

4 Entropy is defined here as “a measure of disorder, or […] unpredictability” (from Wikipedia).

5 Pcap API - Libcap (Unix systems), www.tcpdump.org.

ERNW Enno Rey Netzwerke GmbH Tel. 06221 – 48 03 90 Seite 6

Breslauerstr. 28 Fax 06221 – 41 90 08

D-69124 Heidelberg Ust-ID DE813376919

4 USE CASE: DATA CENTER INTERCONNECT

Many organizations dispose of redundant data centers, be it for high availability or disaster recovery purposes, be it (in

some countries and industry branches, namely in finance/banking) for compliance reasons. These are often located in

close proximity (within the 10–50 km range) to each other and are then connected by means of high speed Ethernet

links allowing for continuous, near real-time data mirroring, for SAN replication or for fast service failover including the

transfer or virtual machines by technologies like VMware’s VMotion.

4.1 Involved Network Technologies

There are three main approaches for the network interconnection between such data centers:

� Dedicated dark fiber, used by just one customer/organization.

� Dedicated lambda on a WDM link.

� Use of some Carrier Ethernet technology which encompasses Metro Ethernet, XoMPLS, VPLS or Ethernet over SDH

(EoSDH).

It should be noted that none of these dispose of inherent security properties (like traffic authentication or

confidentiality/integrity protection or the like) by design. Their – potential or real – security is solely based on the

perceived isolation property they provide and the expected trustworthiness of the environment they run in, e.g. a

carrier’s network or premises.

4.2 Protocols

The most common protocols for SAN traffic or replication are NFS, FCoE and iSCSI. While a detailed discussion of their

respective functionality and specifications is not relevant for our discussion, it should be noted that, again, most of them

do not dispose of inherent security properties on their own. A notable exception is NFSv4 which has some mature

security mechanisms. However, the authors are not aware of many organizations using these mechanisms.

4.3 Attacks

Given the absence of any security mechanisms on these links (neither on the network layer nor on the

protocol/application layers) all types of attacks against the transported traffic’s confidentiality or integrity might be

possible – once an attacker gets access to a link6.

These include eavesdropping attacks against data stored in data bases (like credit card information from customers as

shown in the sample attack below) as well as more sophisticated attacks against authentication protocols.

In 2008, an American PhD student demonstrated how to effectively circumvent the SSH authentication of systems

transferred by means of VMotion. A single instruction which was injected into the runtime image of the SSH daemon on

a live machine7 enabled the attacker to circumvent the SSH authentication mechanisms.

This shows that successful attacks against such links might have disastrous consequences. Complementing the high

impact of a possible attack, it must be shown that it also can be performed in a feasible way, so to speak in a reasonable

amount of time and using commodity hardware.

6 See (3).

7 See http://www.blackhat.com/presentations/bh-dc-08/Oberheide/Presentation/bh-dc-08-oberheide.pdf for details. It should be

noted that with vSphere 4.0 a parameter was introduced that allows to require the encryption of VMotion transfers but first this

one has some usability problems on its own (see http://virtualkenneth.com/2009/08/11/v/) and second from the authors’

assessment experience is rarely used in real-world deployments.

ERNW Enno Rey Netzwerke GmbH Tel. 06221 – 48 03 90 Seite 7

Breslauerstr. 28 Fax 06221 – 41 90 08

D-69124 Heidelberg Ust-ID DE813376919

5 TACKLING THE PROBLEM

This section outlines pitfalls of the analysis of very large traffic dump files that were identified during the initial

research phase or are based on experiences from the actual lab setup and test runs. Based on these findings, it was

possible to build the final lab setup in an efficient way.

5.1 COTS Packet Analysis Tools

A number of tests utilizing available command-line tools (tethereal, tshark, tcpdump8 and the like) were performed. It

turned out that, performance-wise, “classic” tcpdump showed the most promising results. During the following, in-

depth testing phase two problems of tcpdump showed up:

� As it is single-threaded, it cannot use multiple processors of a system (for parallel processing). However, given the

actual bottlenecks to be related with I/O anyway (see below) this issue turned out not to be a major problem.

� Standard pcap filters do not allow for "keyword search" in an easy way9 which somehow limits the attack scenarios

(attacker might not be able to search for credit card numbers, user names etc. but would have to perform an IP

parameter based search first and then hand over to another tool which might cause an unacceptable delay in the

overall analysing process).

5.2 Custom Tool pcap_extractor

The custom tool developed in the course of the research process is basically the fastest possible implementation of a

pcap file reader. It opens a libpcap file handle for the designated input file, applies a libpcap filter to it and loops

through all the filter matching packets, writing them to an output pcap file. Contrary to tcpdump and most other libpcap

based analysis tools, it provides the possibility to search for a given string inside of the matching packets, for example a

credit card number or a username in an easy way. If such a search string is applied, only packets matching the libpcap

filter and containing the search string are written to the output file.

An example call to search a pcap file for iSCSI packets which contain a certain credit card number and write them to the

output file is shown in the following:

$> pcap_extractor -i input-file.pcap -o output-file .pcap -f “tcp port 3260” -s

“5486123456789012“

5.3 Hardware Aspects

5.3.1 Identifying the bottleneck

While measuring the performance of multiple pcap analysis tools, profiling of system calls indicated that the tools spent

between 85% and 98%10 of the search time on waiting for I/O. In case of the fastest tool that means 98% of the time the

tool doesn’t process anything, but waits for dump data. So the I/O bandwidth turned out to be the major bottleneck in

the test setup.

8 http://www.tcpdump.org/.

9 It is possible to split up the search string into byte numbers and insert into the pcap filter, but this is quite difficult for using the

tool in a fast and easy way. Additionally, in case of using tcpdump, we found out that there are some problems with NULL-bytes

inside a packet.

10 Depending on the tool analyzed.

ERNW Enno Rey Netzwerke GmbH Tel. 06221 – 48 03 90 Seite 8

Breslauerstr. 28 Fax 06221 – 41 90 08

D-69124 Heidelberg Ust-ID DE813376919

5.3.2 Actual lab setup

The lab system was designed to provide as much I/O bandwidth as possible and was composed of:

� Intel Core i7-990X Extreme Edition, 6x 3.46GHz

� 12GB (3 * 4GB) DDR3 1600MHz, PC3-12800

� ASRock X58 Extreme6 S1366 mainboard

� 4 * Intel 510 Serie Elm Crest SSD 250GB

The mainboard and the SSDs were chosen to support SATA3 with a theoretical maximal I/O bandwidth of 6 Gbit/s.

FreeBSD was used as operating system.

5.4 Doing it “the cloud way”

One of the key characteristics of cloud computing is the flexible provision of computing resources on demand. The

processing of large data sets on peak loads is a typical use case for cloud computing environments. Therefore, the I/O

intensive analysis of the large pcap files was also performed within the Amazon Elastic Compute Cloud where a large

amount of resources could be allocated as they were necessary. Additionally, virtualized cloud storage is quickly and

available in arbitrary size.

5.4.1 Lab Setup

The Amazon Elastic Compute Cloud (short: EC2) provides a flexible environment for the provisioning of virtual machines

of different hardware performance on demand. For the current lab setup, an extra large instance (see Appendix 8.2)

was used. Since the I/O performance of a single disk was the bottleneck of the data processing, eight Elastic Block

Storage (short: EBS) volumes were created and attached to the instance. Each EBS volume is hosted within a specific

availability zone and can be attached to instances running in the same zone. EBS volumes can be created and attached

issuing two commands of the amazon ec2 command line tools. Therefore the amount of storage can be scaled up very

easily. The only pre-condition is the existence of a sufficient number of EBS volumes which contain parts of the pcap file

to be analyzed. During the benchmarks, the performance was significantly lower than the one of the system presented

in chapter 5.3.2, even though eight different EBS volumes were used to avoid the bottleneck of a single storage volume.

The overall performance of the test was limited by the I/O performance restriction within virtualized instances and

virtualized storage systems. Following the overall cloud computing paradigm, performance limitations of this kind can

be circumvented by using multiple resources which do the processing in parallel. This can be done by using multiple

instances or by using frameworks like Amazon MapReduce which are designed to process huge sets of data. Applying

this approach to the analysis of pcap files, the structure of the pcap format carries some inherent problems. This

format consists of a binary representation of the data which is structured by the time of the captured packets and not by

logical packet traces. Therefore it would be necessary to process the complete pcap file by each instance to extract all

streams to identify which streams of the file are to be analyzed by the concrete worker instance. This prevents an

efficient distribution of the analysis in multiple jobs or input files. If the captured network data would be stored in

separate streams instead of one big pcap file, the processing using a map/reduce algorithm would be possible and thus

significantly increase scalability.

ERNW Enno Rey Netzwerke GmbH Tel. 06221 – 48 03 90 Seite 9

Breslauerstr. 28 Fax 06221 – 41 90 08

D-69124 Heidelberg Ust-ID DE813376919

5.4.2 Results

Table 2 shows the results of the analysis in the cloud environment described in Section 5.4.1. The evaluated costs

include storage and computing power, additional I/O cycles or input bandwidth was not considered.

Table 2: Results of the cloud setup

Filesize (GB) Time of custom code (s)
Estimated time based on 500 GB

(s)
Costs ($)

50 380 424 0.07

100 827 848 0.14

204 - 1713 0.36

404 - 3393 1.17

500 4242 - 1.63

808 - 6787 3.39

ERNW Enno Rey Netzwerke GmbH Tel. 06221 – 48 03 90 Seite 10

Breslauerstr. 28 Fax 06221 – 41 90 08

D-69124 Heidelberg Ust-ID DE813376919

6 TEST RESULTS

6.1 Description of Overall Test Methodology

To evaluate the performance of the testing environments which were used to analyze capture data, two different tools

were used. At first, the still state-of-the art network analysis tool tcpdump, a simple and powerful packet analyzer, was

used. At second, a custom tool11, called pcap_extractor , was specifically developed. The custom tool is similar to the

tcpdump utility in the sense both work with the libpcap C/C++ library. Both tools support packet filtering by means of

libpcap filter expressions. Additionally the custom tool also supports searching for strings inside of a network packet.

For the tests, five capture files were created using the mergecap utility. Different sample traffic dumps12 were merged

to five large files with different file sizes. All these files consist of several capture files containing a variety of protocols

(as well iSCSI and FCoE). In this context, capture files of ~40, ~80, ~200, ~500, and ~800 Gigabytes were created and

were analyzed with both tools. At all tests the filtering expressions for tcpdump and pcap_extractor were configured to

search for a specific source IP address and a specific destination IP address matching for some iSCSI packets inside of

the capture file.

To address the performance bottleneck of the tools, which had been identified to be the I/O throughput, two different

testing environments (see above) were implemented. On the one hand, the lab was configured with raid0 storage

technology, using four SSD hard drives, and on the other hand, four SSDs were used as single drives with each of them

processing only a fourth of the analyzed capture file. For splitting up the capture files into smaller ones, tools like

dumpcap, tcpdump or splitcap and editcap (which are part of the Wireshark suite) can be used13.

The UNIX program time was used to measure the time of execution. Additionally the tools analyzing the data were

started with the highest possible scheduling priority14 to ensure execution with the maximum of available resources.

6.1.1 Command line options

For the custom tool:

$> /usr/bin/time -hp /usr/bin/nice -n -19 ./pcap_ex tractor -i in.pcap -o out.pcap -f "ip

src 192.168.1.207 and ip dst 192.168.1.208" > out &

For the custom tool with string search:

$> /usr/bin/time -hp /usr/bin/nice -n -19 ./extract or -i in.pcap -o out.pcap -f "ip src

192.168.1.207 and ip dst 192.168.1.208" -s "0000000 000620012" > out &

For tcpdump:

$> /usr/bin/time -hp /usr/bin/nice -n -19 /usr/sbin /tcpdump -r in.pcap -w out.pcap src

192.168.1.207 and dst 192.168.1.208 > out &

11 See section 5.2 or appendix 8.4 for a more detailed description.

12 http://wiki.wireshark.org/SampleCaptures

13 Obviously this might already be done as part of the capturing/collection process to save time later on.

14 This was done using the Unix nice command.

ERNW Enno Rey Netzwerke GmbH Tel. 06221 – 48 03 90 Seite 11

Breslauerstr. 28 Fax 06221 – 41 90 08

D-69124 Heidelberg Ust-ID DE813376919

6.2 Results

In the following the lab results are provided and discussed.

Table 3 shows the times for the tools using the raid0 storage technology. To get a better relation between the different

file sizes, an interpolated time, based on the time of the current file size, for 500 gigabytes is depicted in addition. This

time gives the possibility to compare all the times of different file sizes. The result using the raid0 technology gives a

first overview of the programs’ runtimes. While in almost all test cases the custom code seems a little bit faster than

tcpdump, the estimated time for 500 GB is around 2400 seconds (40 minutes).

Table 3: Configured with raid0

Filesize (GB)
Time of custom code

(s)

Estimated time for 500

GB (s)
Time of tcpdump (s)

Estimated time for 500

GB (s)

44 230 2614 230 2614

80 386 2413 387 2419

204 1003 2458 1006 2466

404 1932 2391 1938 2399

516 2477 2400 2487 2410

808 3877 2399 3883 2403

Table 4 shows the second test setup using 4 single SSD drives which all contain a fourth of the capture file to be

analyzed. In comparison to the first scenario, the analysis time for the 500 GB file decreases significantly (about 21

minutes).

Table 4: Configured with 4 single SSD drives

Filesize (GB)
Time of custom code

(s)

Estimated time for 500

GB (s)
Time of tcpdump (s)

Estimated time for 500

GB (s)

44 113 1284 114 1295

80 203 1269 204 1275

204 521 1277 522 1279

404 1017 1259 1016 1257

516 1290 1250 1290 1250

808 2041 1263 2043 1264

Table 5 shows the results of an additional test. During this test, besides the normal filtering expression, the program is

also searching for a specific string inside of the network packets. Looking at the results it becomes clear that there is

no relevant deviance to the runtime of the program without searching for a specific string.

ERNW Enno Rey Netzwerke GmbH Tel. 06221 – 48 03 90 Seite 12

Breslauerstr. 28 Fax 06221 – 41 90 08

D-69124 Heidelberg Ust-ID DE813376919

Table 5: Times for searching a string with pcap_extractor

Filesize (GB)
Single SSD drives , time

(s)

Estimated time for 500 GB

(s)
Raid 0, time (s)

Estimated time for

500 GB (s)

44 113 1284 229 2602

80 203 1269 384 2400

204 517 1267 1002 2456

404 1010 1250 1930 2389

516 1288 1248 2476 2399

808 2022 1251 3874 2397

Figure 1 displays the runtimes of both laboratory configurations. On the one hand it is possible to derive a comparison

between the raid0 and the single drive configuration and on the other hand the figure allows for an estimation as for

other file sizes not used in the tests.

All tests lead to the assumption that there is linearity towards larger filesizes and there is a possible speed-up for a

faster processing via configuring the lab with more parallelized I/O capacity.

Figure 1: Linearity of the work process

0

500

1000

1500

2000

2500

3000

3500

4000

4500

44 80 204 404 516 808

Custom Code

TCPdump

Custom Code +

Stringsearch

Custom Code

Time (s)

Filesize (Gbytes)

Raid0

4 single SSD

ERNW Enno Rey Netzwerke GmbH

Breslauerstr. 28

D-69124 Heidelberg

6.3 Demo: Extracting credit card data from an Oracle database running on virtual machine being transferred

as a whole

To show the impact of capturing and filtering data in business environments, an oracle database was set up

machine. Such an Oracle database

various reasons. There may be a database transfer between two locations, a backup to another server or just a simple

transaction by a user. Figure

sensible credit card data.

At first we started a transfer of the whole virtual machine which is running the Oracle database. For

simplicity, FTP was used instead of VMotion

This capture file was then analyzed with pcap_extractor to search for a specific string (for example th

card holder), which is shown in

ERNW Enno Rey Netzwerke GmbH Tel. 06221 – 48 03 90

 Fax 06221 – 41 90 08

 Ust-ID DE813376919

Demo: Extracting credit card data from an Oracle database running on virtual machine being transferred

To show the impact of capturing and filtering data in business environments, an oracle database was set up

uch an Oracle database may store a lot of information, which in addition may be

reasons. There may be a database transfer between two locations, a backup to another server or just a simple

Figure 2 shows the content of the Oracle database, set up for simulating an environment storing

Figure 2: Contents of the Oracle database

At first we started a transfer of the whole virtual machine which is running the Oracle database. For

, FTP was used instead of VMotion. By default both approaches do not encrypt the transferred data.

This capture file was then analyzed with pcap_extractor to search for a specific string (for example th

is shown in Figure 3.

Figure 3: Console output of pcap_extractor

 Seite 13

Demo: Extracting credit card data from an Oracle database running on virtual machine being transferred

To show the impact of capturing and filtering data in business environments, an oracle database was set up on a virtual

, which in addition may be send over the network due to

reasons. There may be a database transfer between two locations, a backup to another server or just a simple

shows the content of the Oracle database, set up for simulating an environment storing

At first we started a transfer of the whole virtual machine which is running the Oracle database. For reasons of

. By default both approaches do not encrypt the transferred data.

This capture file was then analyzed with pcap_extractor to search for a specific string (for example the name of a credit

ERNW Enno Rey Netzwerke GmbH

Breslauerstr. 28

D-69124 Heidelberg

The resulting output file contains the packets with the data se

Figure

ERNW Enno Rey Netzwerke GmbH Tel. 06221 – 48 03 90

 Fax 06221 – 41 90 08

 Ust-ID DE813376919

The resulting output file contains the packets with the data searched for, as shown in Figure

Figure 4: Output file of pcap_extractor in Wireshark

 Seite 14

Figure 4.

ERNW Enno Rey Netzwerke GmbH Tel. 06221 – 48 03 90 Seite 15

Breslauerstr. 28 Fax 06221 – 41 90 08

D-69124 Heidelberg Ust-ID DE813376919

7 CONCLUSIONS

It could be shown that the extraction of specific data from very large network traffic dumps can be achieved within a

rather short time period. This was even possible using COTS hardware available for about 3000 € (as of March 2011).

This means that an attacker disposing of (large) data sets resulting from previous eavesdropping attacks will most

likely succeed in getting the exact data she’s going after. In the lab setup, it took about 21 minutes to find a certain

credit card number within a file sized 500 gigabyte which equates to a live migration of 16 virtual machines with 32 GB of

virtual memory each.

The widespread perception that the sheer amount of data transferred over high speed network links prevents the

extraction of data could thereby be proven wrong.

The entropy of a given file has practically no influence on the search/processing time needed. Furthermore it should be

noted that the tests show a high correlation/degree of linearity between the size of the files (potentially derived by

splitting one very large file into several chunks, each of them still of huge size) and the search time. So it seems there’s

a simple trade-off between the amount of storage provided and the search time. Given the ever-declining price of

storage this will lead to even lower costs for such an attack in the future.

ERNW Enno Rey Netzwerke GmbH Tel. 06221 – 48 03 90 Seite 16

Breslauerstr. 28 Fax 06221 – 41 90 08

D-69124 Heidelberg Ust-ID DE813376919

8 APPENDIX

8.1 Bibliography

1. Nottinghamn, Alastair and Irwin, Barry. Parallel packet classification using GPU co-
processors. Rhodes : s.n., 2010.
2. Kang, Wonchul, Lee, Yeonhee and Lee, Youngseok. Netflow Analysis with MapReduce.
Chungnam : s.n., 2010.
3. Infoguard. Risiken und Gefahren bei optischen Datenleitungen. [Online] [Zitat vom: 15. 5
2011.] http://www.infoguard.com/docs/PDF/IG_Dokumente/WP_Fiber_Optic_Communication-
d.pdf.
4. Konwinski, Andy and Rabkin, Ariel. Using multi-source data to analyze large packet
traces. Berkeley : s.n.
5. But, Jason and Bussiere, Julie-Anne. Improving NetSniff Capture Performance on FreeBSD
by Increasing the PCAP Capture Buffer. Melbourne : s.n., 2005.
6. Vijn, Arin. A 10GE Monitoring System.

ERNW Enno Rey Netzwerke GmbH Tel. 06221 – 48 03 90 Seite 17

Breslauerstr. 28 Fax 06221 – 41 90 08

D-69124 Heidelberg Ust-ID DE813376919

8.2 Details of AWS Instance used

The used Amazon EC2 instance was a so called extra large instance. Amazon describes this instance type as follows:

� 15 GB memory

� 8 EC2 Compute Units (4 virtual cores with 2 EC2 Compute Units each)

� 1,690 GB instance storage

� 64-bit platform

� I/O Performance: High

� API name: m1.xlarge

1 EC2 Compute Unit “provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor”15,

whereby the I/O performance scale of low, medium and high is not defined in more detail.

15 As stated under http://aws.amazon.com/ec2/instance-types/.

ERNW Enno Rey Netzwerke GmbH Tel. 06221 – 48 03 90 Seite 18

Breslauerstr. 28 Fax 06221 – 41 90 08

D-69124 Heidelberg Ust-ID DE813376919

8.3 Code of custom tool

// pcap_analyser.c

//

// Copyright 2011 Daniel Mende <dmende@ernw.de >

//

// This program is free software; you can redi stribute it and/or modify

// it under the terms of the GNU General Publi c License as published by

// the Free Software Foundation; either versio n 2 of the License, or

// (at your option) any later version.

//

// This program is distributed in the hope tha t it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU General Public License for more details .

//

// You should have received a copy of the GNU General Public License

// along with this program; if not, write to t he Free Software

// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,

// MA 02110-1301, USA.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <sys/time.h>

#include <pcap.h>

#define MAX_PACKET_LEN 4096

void print_help()

{

 printf("\n-h\n");

 printf("-i <infile>\n");

 printf("-o <outfile>\n");

 printf("-f <pcap-filter>\n");

 printf("-s <search-string>\n\n");

 exit(0);

}

int main(int argc, char **argv)

{

 int opt;

 char *infile = NULL;

 char *outfile = NULL;

 char *filter = NULL;

 char *search = NULL;

 pcap_t *pcap_handle_in;

 char pcap_errbuf[PCAP_ERRBUF_SIZE];

 const u_char *pcap_packet;

 struct pcap_pkthdr *pcap_header;

 struct bpf_program pcap_filter;

 pcap_dumper_t *pcap_dumper;

ERNW Enno Rey Netzwerke GmbH Tel. 06221 – 48 03 90 Seite 19

Breslauerstr. 28 Fax 06221 – 41 90 08

D-69124 Heidelberg Ust-ID DE813376919

 char packet[MAX_PACKET_LEN + 1];

 int len;

 struct timeval start, stop;

 unsigned long found = 0;

 printf("pcap highspeed extractor version 1\tby Daniel Mende - dmende@ernw.de\n");

 fflush(stdout);

 while ((opt = getopt(argc, argv, "i:o:f:s:h")) != -1) {

 switch (opt) {

 case 'i':

 infile = optarg;

 break;

 case 'o':

 outfile = optarg;

 break;

 case 'f':

 filter = optarg;

 break;

 case 's':

 search = optarg;

 break;

 case 'h':

 print_help();

 break;

 default:

 printf("unknown switch: %c\n", opt);

 return 1;

 }

 }

 if (!infile || !outfile || !filter) {

 printf("ooops, missing some argument...\n") ;

 print_help();

 return 1;

 }

 // open infile

 pcap_handle_in = pcap_open_offline(infile, pcap _errbuf);

 if (pcap_handle_in == NULL) {

 fprintf(stderr, "Couldn't open file: %s\n", pcap_errbuf);

 return 2;

 }

 if (pcap_compile(pcap_handle_in, &pcap_filter, filter, 0, 0) == -1) {

 fprintf(stderr, "Couldn't parse filter: %s\ n", pcap_errbuf);

 return 2;

 }

 if (pcap_setfilter(pcap_handle_in, &pcap_filter) == -1) {

 fprintf(stderr, "Couldn't install filter: % s\n", pcap_errbuf);

 return 2;

 }

 // open outfile

 pcap_dumper = pcap_dump_open(pcap_handle_in, ou tfile);

 if (pcap_dumper == NULL) {

 fprintf(stderr, "Couldn't open file: %s\n", pcap_errbuf);

 return 2;

ERNW Enno Rey Netzwerke GmbH Tel. 06221 – 48 03 90 Seite 20

Breslauerstr. 28 Fax 06221 – 41 90 08

D-69124 Heidelberg Ust-ID DE813376919

 }

 gettimeofday(&start, NULL);

 while (pcap_next_ex(pcap_handle_in, &pcap_heade r, &pcap_packet) > 0) {

 if (search) {

 if (pcap_header->len > MAX_PACKET_LEN) {

 memcpy(packet, pcap_packet, MAX_PAC KET_LEN);

 packet[MAX_PACKET_LEN] = '\0';

 len = MAX_PACKET_LEN;

 } else {

 memcpy(packet, pcap_packet, pcap_he ader->len);

 packet[pcap_header->len] = '\0';

 len = pcap_header->len;

 }

 if (memmem(packet, len, search, strlen(search))) {

 found++;

 pcap_dump((u_char *) pcap_dumper, p cap_header, pcap_packet);

 }

 } else {

 found++;

 pcap_dump((u_char *) pcap_dumper, pcap_ header, pcap_packet);

 }

 }

 gettimeofday(&stop, NULL);

 pcap_dump_close(pcap_dumper);

 pcap_close(pcap_handle_in);

 printf("Found %lu matching packets in %i second s.\n", found, (int) (stop.tv_sec -
start.tv_sec));

 return 0;
}

		2012-03-12T15:55:20+0100
	Friedwart Kuhn

