

1

ERNW Newsletter 25 / March 2009

Dear Partners and Colleagues,

Welcome to the ERNW-Newsletter No. 25 covering the topic:

Malware Analysis for Business Purposes

Version 1.0 from 10th of March 2009

Author: Michael Thumann, mthumann@ernw.de

2

TABLE OF CONTENT

1  INTRODUCTION .. 4 
2  ONLINE SANDBOX SYSTEMS .. 4 
2.1  Threatexpert... 4 
2.2  CWSandbox... 5 
2.3  Norman Sandbox ... 5 
2.4  Conclusion ... 5 
3  INDIVIDUAL SANDBOX SYSTEM... 6 
3.1  Technical Requirements .. 6 
3.2  The Analysis Toolset.. 7 
3.3  Conclusion ... 7 
4  REVERSE ENGINEERING... 8 
4.1  Required Tools for Reversing Malware.. 8 
4.2  The structured approach.. 8 
4.3  Detect code obfuscation .. 8 
4.4  Defeat code obfuscation .. 10 
4.5  Detect anti-reversing tricks .. 11 
4.6  Defeat anti-reversing tricks .. 11 
4.7  Analyze what the malware is doing.. 12 
4.8  Conclusion ... 15 
5  RECOMMENDATION.. 15 
6  SUMMARY ... 16 

3

Table of Figures:
Figure 1: Threatexpert Report... 4 
Figure 2: CWSandbox Report... 5 
Figure 3: RDG scanning conficker ... 9 
Figure 4: Initial Disassembly with IDA.. 9 
Figure 5: Sasser Disassembly ... 9 
Figure 6: Offsets for Functions... 10 
Figure 7: Encrypted data? ... 10 
Figure 8: Suspicious Functions... 10 
Figure 9: Example Debugger Check... 11 
Figure 10: Phant0m Anti-Anti-Debugging ... 12 
Figure 11: Passing IP to function... 12 
Figure 12: Remote Share being constructed ... 13 
Figure 13: Remote GetVersion Call ... 13 
Figure 14: Installing Backdoor ... 13 
Figure 15: Create Autostart RegKey .. 13 
Figure 16: Add registry subkeys... 14 
Figure 17: Disable AV services .. 14 
Figure 18: Buffer Overflow in conficker .. 14 

4

1 INTRODUCTION
Malware is still one of the most dangerous threats for companies in the year 2009, regardless if
working antivirus measures are in place or not. Companies are facing automated worms and also
targeted attacks against important employees that can lead to critical data breaches. New
techniques to hide the malware from any antivirus program are developed and targeted attacks
almost always contain customized malware to prevent them from being identified and analyzed.

Large enterprises have already started to create special response teams for analyzing these kind
of malware attacks to get a better understanding what kind of information attackers are interested
in and what techniques are used to cover the programs and their functionality.

This paper will introduce the different approaches how malware can be analyzed and discuss the
pros and cons. It will cover online sandboxes, individually build sandbox systems with a dedicated
tool set and the required protection features and also a reverse engineering approach. It will
describe obfuscation techniques that are used by attackers to prevent the malware from being
analyzed and possible solutions to defeat them. Finally we will give some recommendations which
approach works best in a company from our point of view.

2 ONLINE SANDBOX SYSTEMS
Online sandbox systems are a good starting point for an easy and fast analysis of suspicious
programs, especially in a business context. You receive your results within minutes and choosing
one of the recommended vendors, it is quite accurate and can help to implement the right
measures against the malware threat.

2.1 Threatexpert
This online sandbox can be reached via http://www.threatexpert.com and the service is offered for
free. You can submit samples anonymously and the report will be visible for all Threatexpert users,
but there is also the possibility the register a free account and keep you submission results private.
It is also possible to reanalyze a malware sample that was already submitted and get your
personal report.

Figure 1: Threatexpert Report

5

2.2 CWSandbox
The university of Mannheim runs http://www.cwsandbox.org based on the corresponding
commercial product of Sunbelt Software and is also offering the service for free. Compared to
Threatexpert the results are more detailed and sometimes reveal additional information that other
online sandboxes don’t find, but the Threatexpert report is better structured and more readable.
When a sample is submitted that was already analyzed, you just get a link to the report, but the
sample won’t be reanalyzed. All reports are publically available and there is also no individual
environment for private reports.

Figure 2: CWSandbox Report

2.3 Norman Sandbox
The Norman sandbox information center also offers the submission of malware samples at
http://www.norman.com/microsites/nsic/Submit/en-us, but compared to the other sandbox systems
you only get a marketing email back for free. The provided details about your malware are pretty
poor and without any real business value, it’s more or less an advertisement to buy the product.

2.4 Conclusion
The free online sandbox analysis services of Threatexpert and CWSandbox can be used for
business purposes. CWSandbox provides more details, but Threatexpert has the great advantage
that your results will arrive within minutes, which is quite helpful when working on an actual
incident. Both services don’t reveal any details about the submitter of the malware samples, but
when submitting targeted attack samples the technical details might disclose information about
your company like email addresses of the targeted victim.

Online sandboxes have their business value in providing fast analysis results, but also keep in
mind that they have their limitations. Malware that contains anti-reverse-engineering technology
like detection of virtual environments might not run in these sandbox systems or won’t reveal it’s
damage potential due to a modified behavior.

6

3 INDIVIDUAL SANDBOX SYSTEM
Building your own sandbox system is the next step in a malware analyzing business process,
especially if you’re not allowed to submit your samples to online systems due to confidentiality
requirements in your company and to prevent any kind of information disclosure. Of course there is
the possibility to buy one of the recommended products of chapter 2 and run it in your own
environment, but you also might have additional requirements like

 Supporting other operating systems than Windows like MAC OS X, Linux or Solaris
 Add stealth functionality to analyze malware with anti-reverse-engineering technology
 Reflect your company security controls to see the specific impact to your environment

and there might be more. But building your own sandbox is also a challenge, because some
considerations have to be made to prevent any damage to your environment and control the
sandbox.

3.1 Technical Requirements
Installing and running a sandbox in your own network environment requires some mandatory
technical controls to prevent your sandbox from attacking other companies. On the other hand
some basic functionality like file downloads or general web server access must be allowed to get
proper results. An acceptable approach is to separate the possible network traffic in 2 categories:

1. Control Channel
2. Infection Channel

The Control Channel communicates e.g. with a botnet master to receive commands or download
additional components to extend the functionality of the malware program, the typical
communication for that is often based on HTTP or IRC. The infection channel is used to spread the
malware e.g. via email, file sharing or maybe using an OS related vulnerability and corresponding
protocols like SMB. Of course we’re interested in both of these channels, but we have to handle
the communication differently.

To prevent your sandbox from being permanently infected with the malware sample there must
also be a mechanism in place to restore an initial uninfected and clean state.

So the following technical controls must be in place when setting up your own sandbox:

 Personal or network firewall to control the communication
 A dedicated DNS server to resolve DNS queries to network services under your control
 Fake servers (Mail, Windows server) to capture the infection traffic and redirect it to non-critical

systems
 A restore procedure for your sandbox like Windows restore points or VMware snapshots

This recommended environment can be build using dedicated systems and network segments, if
you’re willing to spent some for money for it, but it’s also possible to build a dedicated VMware
image that contains almost all of the mentioned requirements, except the firewall functionality. The
firewall should be run separated, e.g. on the system hosting the VM to ensure that it can’t be
circumvented or disabled by the malware. Also keep in mind that there are attack vectors against
virtualized environments that might put the host system at risk, if it isn’t properly secured.

7

3.2 The Analysis Toolset
The main motivation for running a sandbox in a business environment is to do a behavior based
analysis, so we need our special tools that will fulfill the job. Again we have different categories
where data has to be recorded and monitored:

 Registry access
 File system access
 Process monitoring
 API monitoring
 Network monitoring

For each category dedicated tools are available, e.g.

 Registry access: RegMon (http://technet.microsoft.com/en-us/sysinternals/bb896652.aspx)
 File system access: FileMon (http://technet.microsoft.com/en-us/sysinternals/bb896642.aspx)
 Process monitoring: ProcMon (http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx)
 API monitoring: Autodebug Professional (http://www.autodebug.com/) - Commercial Software
 Network monitoring: Wireshark (http://www.wireshark.org/)

But there are also dedicated malware analysis tools that are available for free, summarizing these
categories. iDefense offers tool suites for that purpose in their download section
(http://labs.idefense.com/software/malcode.php):

 SysAnalyzer: An automated malcode run time analysis tool
 Malware Analysis Pack: Toolset for rapid malware analysis (Fake DNS and Mail server)
 Multipot: An emulation based honeypot designed to capture malicious code

Installing all these tools gives you a sandbox system that can be used for doing manual analysis of
the malware samples, but requires some hands-on experience with the toolset.

3.3 Conclusion
Although building your own sandbox system gives you a lot of flexibility in the analysis process and
ensures the compliance to corporate security policies regarding confidentiality requirements, there
are also some disadvantages:

 The analysis process is not automated
 The monitoring tools can still be detected by the malware program
 A lot of effort must be spent to ensure proper isolation of the sandbox system

From the authors point of view this approach can’t be recommended in a business context where
time and manpower are important factors. If there’s a business need for doing malware analysis in
your own environment, consider buying one of the products mentioned in chapter 2 instead.

But if you want to work with the following reverse engineering approach, building your individual
sandbox is mandatory requirement.

8

4 REVERSE ENGINEERING
Reverse engineering comes into place when you need an in-depth analysis of your malware
sample. Although in theory it might be possible to do a complete static analysis without running the
malware, but when facing today’s modern malware that won’t work in practice. Defeating the
commonly applied anti-reverse-engineering techniques requires that the malware is executed at
least until a specific point to acquire a disassembly you can work with. To avoid infection of your
analysis system you need a customized sandbox system as mentioned in the previous chapter.
Equipped with the right toolset, a deep knowledge about the operating system and some
programming skills, you’re ready to start the reversing process following a structured approach to
accomplish your task in a reasonable amount of time.

4.1 Required Tools for Reversing Malware
Even if there are tons of helpful tools out there in the Internet, that can make the reverse engineers
life much easier, the following toolset is a minimum requirement for reversing malware:

 IDA Pro 5.4: Commercial Disassembler available at http://www.hex-rays.com/
 Hex-Rays: Commercial Decompiler Plugin for IDA Pro available at http://www.hex-rays.com/
 X86emu: x86 Emulator Plugin for IDA Pro available at https://sourceforge.net/projects/ida-

x86emu/
 RDG Packer Detector: Program for detecting code obfuscators available at

http://rdgsoft.8k.com/IndexIngles.html
 Bochs 2.3.7: Virtualizing Software and PC Emulator available at http://bochs.sourceforge.net/
 OllyDBG: Windows Ring 3 Debugger available at http://www.ollydbg.de/
 Ollydump: OllyDBG plugin that dumps a program from memory available at

http://www.woodmann.com/collaborative/tools/index.php/OllyDump
 Phant0m: OllyDBG plugin for hiding the debugger available at

http://www.woodmann.com/collaborative/tools/index.php/PhantOm

4.2 The structured approach
When doing reverse engineering for business purposes, you always have a limited amount of time
to accomplish your tasks, so a structured approach is needed to stay focused on the job. So here
are the steps that are needed to reverse malware, some of them are explained later on in more
detail.

1. Get hands on your malware sample
2. Prepare your sandbox
3. Detect code obfuscation
4. Defeat code obfuscation
5. Detect anti-reversing tricks
6. Defeat anti-reversing tricks
7. Analyze what the malware is doing

4.3 Detect code obfuscation
More than 80% of the malware samples are obfuscated in some way, so one mandatory step
before starting the reversing process is to detect EXE packers and encryptors that must be
defeated. There are two possibilities, using a packer detector or take a direct look into the
disassembly and spot the typical signs for code obfuscation. Of course the packer detector is the
easier approach, so let’s have a look at RDG Packer Detector first. The tool is scanning for well-

9

known signatures of commonly used packers and encryptors. Here is an example scanning the
conficker worm:

Figure 3: RDG scanning conficker

The second possibility is to load the malware into IDA Pro and examine the disassembly for typical
signs of packers:

Figure 4: Initial Disassembly with IDA

IDA recognizes UPX and some other packers out of the box, but most of the packers are harder to
identify. The next example shows a part of the code segment of the sasser worm after the initial
IDA disassembly:

Figure 5: Sasser Disassembly

IDA couldn’t disassemble this part of the code segment during the initial analysis and has marked
it as data, which is a reliable sign for an EXE packer or encryptor.

10

4.4 Defeat code obfuscation
To go on with the reversing task the code obfuscation must be defeated, that means the malware
must be unpacked or decrypted. As long as UPX is used this is quite easy, because you can use
UPX for unpacking too:

hal9000:conficker mthumann$ upx -d conficker.dll -o conficker-unpacked.dll
 Ultimate Packer for eXecutables
 Copyright (C) 1996 - 2008
UPX 3.03 Markus Oberhumer, Laszlo Molnar & John Reiser Apr 27th 2008

 File size Ratio Format Name
 -------------------- ------ ----------- -----------
 169591 <- 162423 95.77% win32/pe conficker-unpacked.dll

Unpacked 1 file.

But life isn’t always that easy and unpacking the malware is one of the greater challenges when
reversing malware. Very often the malware must be run within a debugger to let it unpack or
decrypt itself and then take a memory dump of the program. OllyDBG is a good debugger for doing
that and the memory dump can be done with the plugin OllyDump. Of course the malware should
only be run in your prepared sandbox.

Looking at the conficker disassembly after unpacking reveals that the code is still obfuscated. We
can spot a lot of offsets for function calls in the data segment

Figure 6: Offsets for Functions

and also bytes that look like encrypted data at the first glance:

Figure 7: Encrypted data?

We can identify typical functions like VirtualAlloc and VirtualProtect that are used to write
decrypted code directly to the memory and then call it:

Figure 8: Suspicious Functions

11

So it looks like we still have some work to do to deobfuscate the code. Because doing that with a
static approach, just looking at the assembler code, will take too much time, we start OllyDBG, load
the binary and set breakpoints at the VirtualAlloc and VirtualProtect function calls. When the
breakpoints are reached we can find the deobfuscated code in the allocated memory region. For
getting a proper disassembly we have to rebuild the PE header and the import table for the code
and then we are ready to start the analysis.

A very detailed walkthrough of the conficker unpacking steps can be found at
http://earlmarcus.blogspot.com/2009/01/unpacking-confickerdownadup.html.

4.5 Detect anti-reversing tricks
The creators of malware are aware of the methodologies used for unpacking their malware and are
protecting it with anti-reversing tricks to make the analysis process much harder. Often used tricks
are:

 Detecting Debuggers using the Windows API call IsDebuggerPresent
 Detecting Virtualization e.g. looking for specific hardware or registry keys
 Detecting Instrumentation e.g. with FindWindow(“FilemonClass“, NULL)
 Dynamically Computed Target Addresses are used to ensure that the execution flow can only

be followed at runtime
 Targeted Attacks against the Analysis Tools e.g. vulnerabilities in IDA and OllyDBG

And there are more tricks and also variants of the mentioned ones. Here is code snippet of
conficker checking for the presence of a debugger using an internal Windows API call (which by
the ways is also a sign for the usage of advanced code obfuscation techniques):

Figure 9: Example Debugger Check

These anti-reversing tricks can be detected by examining the disassembly for suspicious API calls
and observing the runtime behavior of the malware in the debugger e.g. malware crashes when a
debugger is attached.

4.6 Defeat anti-reversing tricks
Defeating these anti-reversing tricks is the hardest challenge when analyzing malware manually,
especially when more of these tricks are combined. Nevertheless there are some approaches to
get a reliable result, because finally the malware has to be executed and must be stored in
memory in an executable form which means in readable machine code. These approaches require
to run the malware and to prevent a malware outbreak, this has to be done in a controlled
environment, and so for reversing malware an individual sandbox system is a must.

Very often this is done using OllyDBG. OllyDBG has a plugin interface, so it can be extended with
useful plugins for hiding the debugger and defeat debugger detection tricks. When working with
OllyDBG we mainly use Phant0m for that purpose, it is quite well maintained and new functionality
is added frequently. Here’s an actual screenshot which techniques are supported by phant0m at
the time of writing:

12

Figure 10: Phant0m Anti-Anti-Debugging

Defeating anti-vm tricks is much harder because many techniques are used to detect a virtualized
environment. Hiding your virtual machine contains approaches like

 Don’t install VM Tools
 Change the MAC Address of your NIC
 Usage of virtualization software that isn’t very common
 Binary patch the malware to NOP the vm detection routines

After managing to defeat all these nasty anti-reversing tricks you are ready to dump the binary
from memory to disk.

4.7 Analyze what the malware is doing
After acquirering your deobfuscated disassembly the reverse engineering process can be started.
Typically malware contains two parts of functionality:

 Infection and spreading
 Damage

Both of them are under the scope of the reverse engineer, because in a business context you want
to protect you infrastructure from getting infected and you want to figure out what kind of damage
is done to the systems.

First we will have an exemplary look at the infection and spreading part. Obviously conficker loops
to a pool of IP addresses:

Figure 11: Passing IP to function

13

It constructs a connection string to the remote IPC$ share of the IP address

Figure 12: Remote Share being constructed

and tries to get the remote OS version:

Figure 13: Remote GetVersion Call

If the remote system is vulnerable to the MS08-067 Vulnerability, conficker exploits it automatically
and infects the system. This is just a small snapshot of the infection part of conficker, let’s move on
to the damage part.

After deleting a service, a new one is created and started to ensure that the malware will survive a
reboot of the infected system:

Figure 14: Installing Backdoor

Of course conficker also creates a registry key in one of the autostart sections:

Figure 15: Create Autostart RegKey

14

In the next step subkeys are generated that contain all required information to start parts of the
malware each time when Windows starts.

Figure 16: Add registry subkeys

Conficker also compromises installed antivirus programs and the firewall settings to keep the
malware stealthy. Here’s a code snippet disabling important security services:

Figure 17: Disable AV services

While analyzing the malware we also stumbled about an exploitable buffer overflow when conficker
is requesting the external IP address of the infected system from an online service, so it looks like
even malware isn’t developed in a secure manner:

Figure 18: Buffer Overflow in conficker

This was just a short journey into the analyzing part of the reverse engineering approach. If you’re
interested in more details about conficker, you can find a very good analysis at
http://mtc.sri.com/Conficker/.

15

4.8 Conclusion
While reversing your malware sample gives you the most detailed information, it also requires the
most amount of time for analysis and very skilled people to do this job. So in a business context
the approach isn’t used too often, mainly just for targeted attacks against VIPs in the organization
and accomplished by external partners that offer this kind of service.

5 RECOMMENDATION
Doing malware analysis especially in a business context is getting more and more common, but it
must be accomplished in a reasonable amount of time to minimize the impact of a malware
outbreak and to take care of economic requirements. All of the mentioned methods have their pros
and cons, some of them are easy to use and others require an in-depth knowledge of reverse
engineering. So, which is the right one to choose? A good solution would be to implement the
malware analysis in your incident response process and define different actions for the different
types of malware. Of course different types must be put into categories, e.g.

1. Known malware (detected by antivirus solutions), targeting all computer users
2. Unknown malware (not yet detected by antivirus solutions), targeting all computer users
3. Known (already analyzed) targeted malware, targeting your organization
4. Unknown (not yet analyzed) targeted malware, targeting your organization
5. Known (already analyzed) targeted malware, targeting VIPs in your organization
6. Unknown (not yet analyzed) targeted malware, targeting VIPs in your organization

The next step is to define a malware analysis action plan for these categories:

Category Action Tool
1. Nothing, should be detected by AV solution Antivirus
2. Acquire sample and analyze Online sandbox
3. Inform all users and ensure that AV is up to date Antivirus
4. Acquire sample and analyze. Create custom

signature for AV and deploy.
Online sandbox (depending on
your internal policies) or internal
sandbox / Antivirus

5. Inform targeted users and ensure that AV is up
to date

Antivirus

6. Acquire sample and analyze. Create custom
signature for AV and deploy.

Internal sandbox / RE of malware
(maybe using partners) / Antivirus

This is just a generic example, how all this stuff can be implemented as business process and how
to define mandatory steps. There might be additional requirements depending on the main
purpose of your organization and the processed data.

16

6 SUMMARY
Malware analysis isn’t a typical field of antivirus companies anymore. Targeted attacks against
organizations require them to deal with this threat and implement corresponding procedures, a
usable tool set reflecting the individual knowledge and user awareness. Organizations should be
prepared before the first major impact and address this topic in their IT-Security policies and
procedures.

Kind regards,
[Michael Thumann].

ERNW GmbH
Michael Thumann
Senior Security Consultant

ERNW Enno Rey Netzwerke GmbH
Breslauer Str. 28
69124 Heidelberg
Tel. +49 6221 480390
Fax +49 6221 419008
www.ernw.de

